C/N ratio and MnSO4 and CuSO4 concentrations were optimized for decolorization and chemical oxygen demand (COD) removal of bleached Kraft pulp mill effluent by Trametes versicolor immobilized in polyurethane foam. Statistical differences ( ) at high C/N ratios (169), 2?mM CuSO4, and 0.071?mM MnSO4 were determined. Decolorization of 60.5%, COD removal of 55%, laccase (LAC) 60?U/L, and manganese peroxidase (MnP) 8.4?U/L were obtained. Maximum of decolorization (82%), COD removal (83%), LAC (443.5?U/L), and MnP (18?U/L) activities at C/N ratio of 405 (6.75?mM CuSO4 and 0.22?mM MnSO4) was achieved in step 7 at 4 d. Positive correlation between the decolorization, COD removal, and enzymatic activity was found ( ). T. versicolor bioremediation capacity was evaluated in bubble column reactor during 8 d. Effluent was adjusted according to optimized parameters and treated at 25°C and air flow of 800?mL/min. Heterotrophic bacteria growth was not inhibited by fungus. After 4 d, 82% of COD reduction and 80% decolorization were recorded. Additionally, enzymatic activity of LAC (345?U/L) and MnP (78?U/L) was observed. The COD reduction and decolorization correlated positively ( ) with enzymatic activity. Chlorophenol removal was 98% of pentachlorophenol (PCP), 92% of 2,4,5-trichlorophenol (2,4,5-TCP), 90% of 3,4-dichlorophenol (3,4-DCP), and 99% of 4-chlorophenols (4CP). 1. Introduction The paper industries generate significant quantities of wastewaters requiring around 15–60?m3 per ton of pulp produced. Wood and the sugarcane bagasse are the main raw materials for the process. Kraft pulp is commonly bleached with chlorine and its oxides, with an initial oxygen bleaching step. Of the different waste streams, bleaching plant effluents are the most toxic, due to the chlorinated organic compounds, color, and COD generated [1]. The brown color of wastewater is due to various conjugated structures including quinones, benzoquinones, complexed catechols, chalcones, and stilbenes, which absorb visible light [2, 3]. Biological treatment using white rot fungi such as T. versicolor involves multiple biochemical and physical reactions that can be carried out simultaneously, like the breakdown of intermolecular bonds, demethylation, hydroxylation, dechlorination, and the opening of the aromatic ring [4]. All of these transformations are developed together through the combined action of several enzymes, for example, laccase, manganese peroxidase, lignin peroxidase, xylanases, veratryl alcohol oxidase, and so forth [5, 6]. Other mechanisms are related to physicochemical
References
[1]
N. Buyukkamaci and E. Koken, “Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry,” Science of the Total Environment, vol. 408, no. 24, pp. 6070–6078, 2010.
[2]
A. Belém, A. V. Panteleitchouk, A. C. Duarte, T. A. P. Rocha-Santos, and A. C. Freitas, “Treatment of the effluent from a kraft bleach plant with white rot fungi Pleurotus sajor caju and Pleurotus ostreatus,” Global NEST Journal, vol. 10, pp. 426–431, 2008.
[3]
S. M. Ghoreishi and M. R. Haghighi, “Chromophores removal in pulp and paper mill effluent via hydrogenation-biological batch reactors,” Chemical Engineering Journal, vol. 127, no. 1–3, pp. 59–70, 2007.
[4]
A. C. Freitas, F. Ferreira, A. M. Costa et al., “Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi,” Science of the Total Environment, vol. 407, no. 10, pp. 3282–3289, 2009.
[5]
B. Quevedo-Hidalgo, P. C. Narvaéz-Rincón, A. M. Pedroza-Rodríguez, and M. E. Velásquez-Lozano, “Degradation of chrysanthemum (Dendranthema grandiflora) wastes by Pleurotus ostreatus for the production of reducing sugars,” Biotechnology and Bioprocess Engineering, vol. 17, pp. 1103–1112, 2012.
[6]
R. Martín-Sampedro, A. Rodríguez, A. Ferrer, L. L. García-Fuentevilla, and M. E. Eugenio, “Biobleaching of pulp from oil palm empty fruit bunches with laccase and xylanase,” Bioresource Technology, vol. 110, pp. 371–378, 2012.
[7]
I. J. Puentes-Cárdenas, A. M. Pedroza-Rodríguez, M. Navarrete-López, T. L. Villegas-Garrido, and E. Cristiani-Urbina, “Biosorption of trivalent chromium from aqueous solutions by Pleurotus ostreatus biomass,” Environmental Engineering and Management Journal, vol. 11, pp. 1741–1752, 2012.
[8]
L. Castillo-Carvajal, K. Ortega-González, B. E. Barragán-Huerta, and A. M. Pedroza-Rodríguez, “Evaluation of three immobilization supports and two nutritional conditions for reactive black 5 removal with Trametes versicolor in air bubble reactor,” African Journal of Biotechnology, vol. 11, pp. 3310–3320, 2012.
[9]
L. C. Castillo-Carvajal, A. M. Pedroza-Rodríguez, and B. E. Barragán-Huerta, “Adsorption and biological removal of basic green 4 dye using white-rot fungi immobilized on Agave tequilana weber waste,” Fresenius Environmental Bulletin, vol. 22, pp. 2334–2343, 2013.
[10]
A. Srinivasan and T. Viraraghavan, “Decolorization of dye wastewaters by biosorbents: a review,” Journal of Environmental Management, vol. 91, no. 10, pp. 1915–1929, 2010.
[11]
D. Daassi, H. Zouari-Mechichi, A. Prieto, M. J. Martínez, M. Nasri, and T. Mechichi, “Purification and biochemical characterization of a new alkali-stable laccase from Trametes sp. isolated in Tunisia: role of the enzyme in olive mill waste water treatment,” World Journal Microbiology Biotechnology, vol. 29, pp. 2145–2155, 2013.
[12]
J. Si, F. Peng, and B. Cui, “Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens,” Bioresource Technology, vol. 128, pp. 49–57, 2013.
[13]
L. M. Henao-Jaramillo, J. A. Fernández-González, B. Quevedo-Hidalgo, A. E. Florido-Cuellar, and A. M. Pedroza-Rodríguez, “Use of a no conventional biological system and advanced oxidation process with TiO2/UV to the discoloration of reactive black 5,” International Journal Biotechnology Color, vol. 1, pp. 9–17, 2012.
[14]
J. M. Rosas, M. M. Martínez, A. M. Pedroza, R. Rodríguez, C. Gómez, and D. Nieto, “Estudio del efecto de dos inductores y un protector enzimático sobre la actividad de las enzimas MnP y Lacasa producidas por Trametes versicolor y su efecto en la decoloración de efluentes de la industria papelera,” Universitas Scientiarum, vol. 10, pp. 37–45, 2005.
[15]
“APHA,” in Standard Methods for the Examination of Water and WasteWater, A. E. Greenberg, L. S. Cleceri , and A. D. Eaton, Eds., The American Public Health Association, Washington, DC, USA, 18th edition, 2005.
[16]
E. Ríos and G. Calva, “Aplicaciones de la cromatografía de gases y líquidos en Biotecnología,” in Aspectos Aplicados de la Biotecnología, pp. 303–354, Politécnico, 1999.
[17]
F. C. Michel Jr., S. B. Dass, E. A. Grulke, and C. A. Reddy, “Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent,” Applied and Environmental Microbiology, vol. 57, no. 8, pp. 2368–2375, 1991.
[18]
R. Tinoco, M. A. Pickard, and R. Vazquez-Duhalt, “Kinetic differences of purified laccases from six Pleurotus ostreatus strains,” Letters in Applied Microbiology, vol. 32, no. 5, pp. 331–335, 2001.
[19]
D. C. Montgomery, Dise?o y Análisis de Experimentos, Limusa, 2nd edition, 2003.
[20]
D. K. Tiku, A. Kumar, R. Chaturvedi, S. D. Makhijani, A. Manoharan, and R. Kumar, “Holistic bioremediation of pulp mill effluents using autochthonous bacteria,” International Biodeterioration & Biodegradation, vol. 64, no. 3, pp. 173–183, 2010.
[21]
P. Kaushik and A. Malik, “Fungal dye decolourization: recent advances and future potential,” Environment International, vol. 35, no. 1, pp. 127–141, 2009.
[22]
V. Elisashvili and E. Kachlishvili, “Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes,” Journal of Biotechnology, vol. 144, no. 1, pp. 37–42, 2009.
[23]
C. Justino, A. G. Marques, D. Rodrigues et al., “Evaluation of tertiary treatment by fungi, enzymatic and photo-Fenton oxidation on the removal of phenols from a kraft pulp mill effluent: a comparative study,” Biodegradation, vol. 22, no. 2, pp. 267–274, 2011.
[24]
M. Doyle, Microbiología de los Alimentos. Fundamentos y Fronteras, Acribia, Zaragoza, Spain, 1997.
[25]
S. T. Akar, A. Gorgulu, Z. Kaynak, B. Anilan, and T. Akar, “Biosorption of Reactive Blue 49 dye under batch and continuous mode using a mixed biosorbent of macro-fungus Agaricus bisporus and Thuja orientalis cones,” Chemical Engineering Journal, vol. 148, no. 1, pp. 26–34, 2009.
[26]
Z. Youshuang, Z. Haibo, C. Mingle, W. Zhenzhen, H. Feng, and G. Peiji, “Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization,” Biotechnology and Bioprocess Engineering, vol. 16, no. 5, pp. 1027–1035, 2011.
[27]
Y. Guillén and á. Machuca, “The effect of copper on the growth of wood-rotting fungi and a blue-stain fungus,” World Journal of Microbiology and Biotechnology, vol. 24, no. 1, pp. 31–37, 2008.
[28]
C. M. Rivera-Hotos, E. D. Morales-álvarez, R. A. Poutou-Pi?alez, A. M. Pedroza-Rodríguez, R. Rodríguez-Vázquez, and J. M. Delgado Boada, “Fungal laccases,” Fungal Biology Review, 2013.
[29]
J. M. álvarez, P. Canessa, R. A. Mancilla, R. Polanco, P. A. Santibá?ez, and R. Vicu?a, “Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor,” Fungal Genetics and Biology, vol. 46, no. 1, pp. 104–111, 2009.
[30]
D. Morales-Fonseca, K. Ruiz-Tovar, M. M. Martínez Salgado et al., “Desarrollo de un biadsorbente laminar con Phanerochaete chrysosporium hipertolerante al cadmio, al níquel y al plomo para el tratamiento de aguas,” Revista Iberoamericana de Micología, vol. 27, pp. 111–118, 2010.
[31]
H. C. Eisenman and A. Casadevall, “Synthesis and assembly of fungal melanin,” Applied Microbiology and Biotechnology, vol. 93, no. 3, pp. 931–940, 2012.
[32]
G. Ranca?o, M. Lorenzo, N. Molares, S. R. Couto, and M. á. Sanromán, “Production of laccase by Trametes versicolor in an airlift fermentor,” Process Biochemistry, vol. 39, no. 4, pp. 467–473, 2003.
[33]
P. A. Karas, C. Perruchon, K. Exarhou, C. Ehaliotis, and D. G. Karpouzas, “Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi,” Biodegradation, vol. 22, no. 1, pp. 215–228, 2011.
[34]
N. A. Kulikova, O. I. Klein, E. V. Stepanova, and O. V. Koroleva, “Use of basidiomycetes in industrial waste processing and utilization technologies: fundamental and applied aspects (review),” Applied Biochemistry and Microbiology, vol. 47, no. 6, pp. 565–579, 2011.
[35]
D. K. Sahoo and R. Gupta, “Evaluation of ligninolytic microorganisms for efficient decolorization of a small pulp and paper mill effluent,” Process Biochemistry, vol. 40, no. 5, pp. 1573–1578, 2005.
[36]
T. Rocha-Santos, F. Ferreira, L. Silva et al., “Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent,” Environmental Science and Pollution Research, vol. 17, no. 4, pp. 866–874, 2010.
[37]
M. A. Ullah, C. T. Bedford, and C. S. Evans, “Reactions of pentachlorophenol with laccase from Coriolus versicolor,” Applied Microbiology and Biotechnology, vol. 53, no. 2, pp. 230–234, 2000.
[38]
L. F. González, V. Sarria, and O. F. Sánchez, “Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV,” Bioresource Technology, vol. 101, no. 10, pp. 3493–3499, 2010.
[39]
J. Zhang, X. Liu, Z. Xu, H. Chen, and Y. Yang, “Degradation of chlorophenols catalyzed by laccase,” International Biodeterioration and Biodegradation, vol. 61, no. 4, pp. 351–356, 2008.