The synthesis of nanoparticles with desired size and shape is an important area of research in nanotechnology. Use of biological system is an alternative approach to chemical and physical procedures for the synthesis of metal nanoparticles. An efficient environment-friendly approach for the biosynthesis of rapid and stable Gold nanoparticles (AuNPs) using whole cells of Geotrichum candidum is discussed in this paper. The enzymes/proteins present in the microorganism might be responsible for the reduction of metal salts to nanoparticles. Various reaction parameters such as culture age, temperature, pH, metal salt, and cell mass concentrations were optimized. The AuNPs were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Nanoparticles were isolated by sonicating the whole cells after treatment with Tween 80. The whole cell mediated process showed the simplistic, feasible, easy to scale up, and low-cost approach for the synthesis of AuNPs. 1. Introduction Metal nanoparticles have been an extensive area of research because of their unique chemical, physical, and optical properties [1]. These make them potential candidates in the field of catalysis, labeling, biosensing, drug delivery, antimicrobial, and so forth [2, 3]. AuNPs have wider ranges of applications in the biomedical field for biosensor development, drug delivery, imaging, photo diagnostics, and so forth [4]. Development of reliable processes for the synthesis of metal nanomaterials with excellent dispersity and stability with minimum harmful effects is the need of the day [5]. Traditional chemical and physical methods reported in the literature involve the use of hazardous chemicals and extreme reaction conditions [6–8]. The current research is directed towards the development of eco-friendly protocols for the synthesis of nanomaterials/nanostructures of desirable sizes and shapes [9, 10]. Considering applications of AuNPs in the fields of biology and medicine, environment, and technology, there is a growing need for the development of cost-effective method for the synthesis of new nanoparticles [11]. The biological methods fulfil all the requirements of a process to be green [12]. Synthesis of nanoparticles utilizing biological system such as bacteria, fungi, and several plant extracts have been widely reported in the literature [6, 13–15]. Microorganisms are able to produce metal nanomaterials either intra- or extracellularly. Intracellular
References
[1]
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1578–1586, 2008.
[2]
F. S. Rosarin and S. Mirunalini, “Nobel metallic nanoparticles with novel biomedical properties,” Journal of Bioanalysis & Biomedicine, vol. 3, pp. 085–091, 2011.
[3]
M. Solomon and G. G. M. D'Souza, “Recent progress in the therapeutic applications of nanotechnology,” Current Opinion in Pediatrics, vol. 23, no. 2, pp. 215–220, 2011.
[4]
E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chemical Society Reviews, vol. 38, no. 6, pp. 1759–1782, 2009.
[5]
J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, “Toward greener nanosynthesis,” Chemical Reviews, vol. 107, no. 6, pp. 2228–2269, 2007.
[6]
K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, “Biological synthesis of metallic nanoparticles,” Nanomedicine, vol. 6, no. 2, pp. 257–262, 2010.
[7]
R. Sanghi and P. Verma, “15 Microbes as green and eco-friendly nanofactories,” in Green Chemistry for Environmental Sustainability, S. K. Sharma, Ed., p. 315, CRC Press, 2010.
[8]
H. Korbekandi, S. Iravani, and S. Abbasi, “Production of nanoparticles using organisms Production of nanoparticles using organisms,” Critical Reviews in Biotechnology, vol. 29, no. 4, pp. 279–306, 2009.
[9]
A. Ahmad, P. Mukherjee, S. Senapati et al., “Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum,” Colloids and Surfaces B, vol. 28, no. 4, pp. 313–318, 2003.
[10]
A. K. Gade, P. Bonde, A. P. Ingle, P. D. Marcato, N. Durán, and M. K. Rai, “Exploitation of Aspergillus niger for synthesis of silver nanoparticles,” Journal of Biobased Materials and Bioenergy, vol. 2, no. 3, pp. 243–247, 2008.
[11]
L. Dykman and K. Nikolai, “AuNPs in biomedical applications: recent advances and perspectives,” Chemical Society Reviews, vol. 41, no. 6, pp. 2256–2282, 2012.
[12]
S. Marimuthu, A. A. Rahuman, G. Rajakumar et al., “Evaluation of green synthesized silver nanoparticles against parasites,” Parasitology Research, vol. 108, no. 6, pp. 1541–1549, 2011.
[13]
A. K. Mittal, Y. Chisti, and U. C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts,” Biotechnology Advances, vol. 31, no. 2, pp. 346–356, 2013.
[14]
A. K. Mittal, A. Kaler, and U. C. Banerjee, “Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum,” Nano Biomedicine and Engineering, vol. 4, no. 3, pp. 118–124, 2012.
[15]
K. B. Narayanan and N. Sakthivel, “Biological synthesis of metal nanoparticles by microbes,” Advances in Colloid and Interface Science, vol. 156, no. 1-2, pp. 1–13, 2010.
[16]
Z. Sadowski, “Biosynthesis and application of silver and AuNPs,” Wroclaw University of Technology, p. 257, 2009.
[17]
A. Kaler, R. Nankar, M. S. Bhattacharyya, and U. C. Banerjee, “Extracellular biosynthesis of silver nanoparticles using aqueous extract of Candida viswanathii,” Journal of Bionanoscience, vol. 5, no. 1, pp. 53–58, 2011.
[18]
M. F. Lengke, M. E. Fleet, and G. Southam, “Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex,” Langmuir, vol. 23, no. 5, pp. 2694–2699, 2007.
[19]
Y. Konishi, T. Tsukiyama, K. Ohno, N. Saitoh, T. Nomura, and S. Nagamine, “Intracellular recovery of gold by microbial reduction of AuCl4- ions using the anaerobic bacterium Shewanella algae,” Hydrometallurgy, vol. 81, no. 1, pp. 24–29, 2006.
[20]
Y. Konishi, K. Ohno, N. Saitoh et al., “Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae,” Journal of Biotechnology, vol. 128, no. 3, pp. 648–653, 2007.
[21]
P. R. Selvakannan, S. Mandal, R. Pasricha, S. D. Adyanthaya, and M. Sastry, “One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface,” Chemical Communications, no. 13, pp. 1334–1335, 2002.
[22]
T. K. Sau and C. J. Murphy, “Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution,” Journal of the American Chemical Society, vol. 126, no. 28, pp. 8648–8649, 2004.
[23]
S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract,” Biotechnology Progress, vol. 22, no. 2, pp. 577–583, 2006.
[24]
B. Ankamwar, M. Chaudhary, and M. Sastry, “Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 35, no. 1, pp. 19–26, 2005.
[25]
P. Mukherjee, S. Senapati, D. Mandal et al., “Extracellular synthesis of AuNPs by the fungus Fusarium oxysporum,” ChemBioChem, vol. 3, no. 5, pp. 461–463, 2002.
[26]
S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 496–502, 2004.
[27]
M. Gericke and A. Pinches, “Biological synthesis of metal nanoparticles,” Hydrometallurgy, vol. 83, no. 1–4, pp. 132–140, 2006.
[28]
S. S. Shankar, A. Ahmad, and M. Sastry, “Geranium leaf assisted biosynthesis of silver nanoparticles,” Biotechnology Progress, vol. 19, no. 6, pp. 1627–1631, 2003.
[29]
C. M. Niemeyer, “Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science,” Angewandte Chemie International Edition, vol. 40, no. 22, pp. 4129–4158, 2001.
[30]
B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Letters, vol. 6, no. 4, pp. 662–668, 2006.
[31]
N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, and R. H. Balasubramanya, “Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus,” Materials Letters, vol. 61, no. 6, pp. 1413–1418, 2007.