As-formed and vacuum annealed zero-valent iron nanoparticles (nano-Fe0) and magnetite nanoparticles (nano-Fe3O4) were tested for the removal of uranium from carbonate-rich mine water. Nanoparticles were introduced to batch systems containing the mine water under oxygen conditions representative of near-surface waters, with a uranyl solution studied as a simple comparator system. Despite the vacuum annealed nano-Fe0 having a 64.6% lower surface area than the standard nano-Fe0, similar U removal (>98%) was recorded during the initial stages of reaction with the mine water. In contrast, ≤15% U removal was recorded for the mine water treated with both as-formed and vacuum annealed nano-Fe3O4. Over extended reaction periods (>1 week), appreciable U rerelease was recorded for the mine water solutions treated using nano-Fe0, whilst the vacuum annealed material maintained U at <50?μg?L?1 until 4 weeks reaction. XPS analysis of reacted nanoparticulate solids confirmed the partial chemical reduction of to in both nano-Fe0 water treatment systems, but with a greater amount of detected on the vacuum annealed particles. Results suggest that vacuum annealing can enhance the aqueous reactivity of nano-Fe0 and, for waters of complex chemistry, can improve the longevity of aqueous U removal. 1. Introduction Iron nanoparticles (hereafter nano-Fe0) in recent years have received much attention as a potential alternative to conventional remediation technologies. By virtue of their size (0–100?nm) engineered nanoparticles offer a significantly greater surface area to volume ratio and higher surface energy [1] and resultantly offer similar or slightly enhanced reactivity to conventional materials but at a fraction of the mass. By using a smaller mass of reactive material to achieve the same objective (i.e., site remediation), both raw materials and energy are conserved [2], with significant potential savings in cost. The key driver behind the emergence of nano-Fe0 for water treatment, however, is the advantage of subsurface deployment via injection as a liquid suspension, with the potential for aqueous contaminant treatment at almost any location and depth in terrestrial groundwater systems. Although nano-Fe0 have proven highly effective for the removal of a wide range of aqueous contaminants from simple synthetic solutions, in recent years, the performance of nano-Fe0 for the remediation of chemically complex and/or “real” solutions in dissolved oxygen containing waters has yielded a contrasting result [3–7]. It has been outlined that the efficacy of nano-Fe0 can be
References
[1]
W.-X. Zhang, “Nanoscale iron particles for environmental remediation: an overview,” Journal of Nanoparticle Research, vol. 5, no. 3-4, pp. 323–332, 2003.
[2]
T. Masciangioli and W.-X. Zhang, “Environmental technologies at the nanoscale,” Environmental Science and Technology, vol. 37, no. 5, pp. 102A–108A, 2003.
[3]
R. A. Crane, M. Dickinson, I. C. Popescu, and T. B. Scott, “Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water,” Water Research, vol. 45, no. 9, pp. 2931–2942, 2011.
[4]
M. Dickinson and T. B. Scott, “The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent,” Journal of Hazardous Materials, vol. 178, no. 1–3, pp. 171–179, 2010.
[5]
F. He, D. Zhao, and C. Paul, “Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones,” Water Research, vol. 44, no. 7, pp. 2360–2370, 2010.
[6]
S. Klimkova, M. Cernik, L. Lacinova, J. Filip, D. Jancik, and R. Zboril, “Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching,” Chemosphere, vol. 82, no. 8, pp. 1178–1184, 2011.
[7]
T. B. Scott, I. C. Popescu, R. A. Crane, and C. Noubactep, “Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants,” Journal of Hazardous Materials, vol. 186, no. 1, pp. 280–287, 2011.
[8]
H. Cui, Y. Feng, W. Ren, T. Zeng, H. Lv, and Y. Pan, “Strategies of large scale synthesis of monodisperse nanoparticles,” Recent Patents on Nanotechnology, vol. 3, no. 1, pp. 32–41, 2009.
[9]
T. B. Scott, M. Dickinson, R. A. Crane, O. Riba, G. M. Hughes, and G. C. Allen, “The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1765–1775, 2010.
[10]
M. Dickinson, T. B. Scott, R. A. Crane, O. Riba, R. J. Barnes, and G. M. Hughes, “The effects of vacuum annealing on the structure and surface chemistry of iron:nickel alloy nanoparticles,” Journal of Nanoparticle Research, vol. 12, no. 6, pp. 2081–2092, 2010.
[11]
F. C. Camilo Moura, G. C. Oliveira, M. H. Araujo, J. D. Ardisson, W. A. De Almeida Macedo, and R. M. Lago, “Formation of highly reactive species at the interface Fe°-iron oxides particles by mechanical alloying and thermal treatment: potential application in environmental remediation processes,” Chemistry Letters, vol. 34, no. 8, pp. 1172–1173, 2005.
[12]
K. V. Ragnarsdottir and L. Charlet, Uranium Behaviour in Natural Environments, Environmental Mineralogy—Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management, vol. 9 of Mineralogical Society Series, 2000.
[13]
C.-B. Wang and W.-X. Zhang, “Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs,” Environmental Science and Technology, vol. 31, no. 7, pp. 2154–2156, 1997.
[14]
“Dayta Systems Bristol UK,” 2013, http://www.daytasystems.co.uk/.
[15]
A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, “Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds,” Surface and Interface Analysis, vol. 36, no. 12, pp. 1564–1574, 2004.
[16]
L. Zhang and A. Manthiram, “Experimental study of ferromagnetic chains composed of nanosize Fe spheres,” Physical Review B, vol. 54, no. 5, pp. 3462–3467, 1996.
[17]
S. Das, M. J. Hendry, and J. Essilfie-Dughan, “Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature,” Environmental Science and Technology, vol. 45, no. 1, pp. 268–275, 2011.
[18]
L. E. Davidson, S. Shaw, and L. G. Benning, “The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions,” American Mineralogist, vol. 93, no. 8-9, pp. 1326–1337, 2008.
[19]
R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH, 2003.
[20]
T. Missana, M. García-Gutiérrez, and V. Fernńdez, “Uranium (VI) sorption on colloidal magnetite under anoxic environment: experimental study and surface complexation modelling,” Geochimica et Cosmochimica Acta, vol. 67, no. 14, pp. 2543–2550, 2003.
[21]
S. Mann, N. H. C. Sparks, S. B. Couling, M. C. Larcombe, and R. B. Frankel, “Crystallochemical characterization of magnetic spinels prepared from aqueous solution,” Journal of the Chemical Society, Faraday Transactions 1, vol. 85, no. 9, pp. 3033–3044, 1989.
[22]
E. Murad, “M?ssbauer and X-ray data on β-FeOOH (akaganéite),” Clay Minerology, vol. 14, pp. 273–283, 1976.
[23]
T. B. Scott, G. C. Allen, P. J. Heard, and M. G. Randell, “Reduction of U(VI) to U(IV) on the surface of magnetite,” Geochimica et Cosmochimica Acta, vol. 69, no. 24, pp. 5639–5646, 2005.