全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamics from Multivariable Longitudinal Data

DOI: 10.1155/2014/901838

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce a method of analysing longitudinal data in variables and a population of observations. Longitudinal data of each observation is exactly coded to an orbit in a two-dimensional state space . At each time, information of each observation is coded to a point , where is the physical condition of the observation and is an ordering of variables. Orbit of each observation in is described by a map that dynamically rearranges order of variables at each time step, eventually placing the most stable, least frequently changing variable to the left and the most frequently changing variable to the right. By this operation, we are able to extract dynamics from data and visualise the orbit of each observation. In addition, clustering of data in the stable variables is revealed. All possible paths that any observation can take in are given by a subshift of finite type (SFT). We discuss mathematical properties of the transition matrix associated to this SFT. Dynamics of the population is a nonautonomous multivalued map equivalent to a nonstationary SFT. We illustrate the method using a longitudinal data of a population of households from Agincourt, South Africa. 1. Introduction Analysis of multivariable longitudinal data involves either statistical or nonstatistical methods. Statistical methods include multivariate Markov chain model [1], regression model [2], and mixed models [3], while some nonstatistical methods involve extraction of dynamical system using state space reconstruction technique [4] or visual methods such as motion charts [5, 6] and parallel coordinate plots [7, 8]. A motion chart shows additional dimensions of the data at different time points, where the size and color of the bubble (among others) are used as variables. PCP represents variables as parallel axes, where a sequence of line segments intersects each axis at a point corresponding to the observation’s value at the associated variable. Both methods aim to identify correlation among variables and identification of clusters and patterns among observations in the data. We present a novel nonstatistical method of analysis that is useful particularly for collecting information of change. State space reconstruction method mainly requires use of delay coordinates from data to come up with models for prediction. Our method does not rely on delay coordinates, and our aim is not prediction. Contrasting to motion charts, there is, in principle, no limitation to the number of variables studied in our method. Contrasting to PCP, for large and large number of observations, orbits over our

References

[1]  E. S. Fung, W. K. Ching, S. Chu, M. K. Ng, and W. Zang, “Multivariate Markov chain models,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 298–302, Hammamet, Tunisia, October 2002.
[2]  C. Bijleveld, L. J. T. van der Kamp, A. Mooijaart, W. van der Kloot, R. van der Leeden, and E. van der Burg, Longitudinal Data Analysis: Designs, Models and Methods, Sage, Thousand Oaks, Calif, USA, 1998.
[3]  H. Verbeke, S. Fiews, G. Molenberhghs, and M. Davidian, “The analysis of multivariate longitudinal data: a review,” Statistical Methods in Medical Research, 2012.
[4]  I. Vlachos and D. Kugiumtzis, “State space reconstruction for multivariate time series prediction,” Nonlinear Phenomena in Complex Systems, vol. 11, no. 2, pp. 241–249, 2008.
[5]  J. Al-Aziz, N. Christou, and I. D. Dinov, “SOCR motion charts: an efficient, open-source, interactive and dynamic applet for visualizing longitudinal multivariate data,” Journal of Statistics Education, vol. 18, no. 3, pp. 1–29, 2010.
[6]  A. Grossenbacher, “The globalisation of statistical content,” Statistical Journal of the IAOS, vol. 25, no. 3-4, pp. 133–144, 2008.
[7]  A. Inselberg, Parallel Coordinates: Visual Multidimensional Geometry and Its Applications, Springer, New York, NY, USA, 2009.
[8]  H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen, “Visual clustering in parallel coordinates,” in Proceedings of the Eurographics/IEEE-VGTC Symposium on Visualization, A. Vilanova, A. Telea, G. Scheuermann, and T. M?ller, Eds., vol. 27, 2008.
[9]  V. Basios, G. Forti, and G. Nicolis, “Symbolic dynamics generated by a combination of graphs,” International Journal of Bifurcation and Chaos, vol. 18, no. 8, pp. 2265–2274, 2008.
[10]  F. Durand, “Combinatorics on Bratteli diagrams and dynamical systems,” in Combinatorics, Automata and Number Theory, V. Berth and M. Rigo, Eds., pp. 324–372, 2010.
[11]  L. Beckett and P. Diaconis, “Spectral analysis for discrete longitudinal data,” Advances in Mathematics, vol. 103, no. 1, pp. 107–128, 1994.
[12]  A. Gottschau, “Markov chain models for multivariate binary panel data,” Scandinavian Journal of Statistics, vol. 21, no. 1, pp. 57–71, 1994.
[13]  M. Mrozek, “Inheritable properties and computer assisted proofs in dynamics,” in Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer, and B. Lang, Eds., vol. 90, pp. 245–257, Akademie, Berlin, Germany, 1996.
[14]  H. Minc, Nonnegative Matrices, John Wiley & Sons, New York, NY, USA, 1998.
[15]  C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC Press, New York, NY, USA, 2nd edition, 1999.
[16]  B. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Chains, Springer, New York, NY, USA, 1998.
[17]  D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, New York, NY, USA, 1995.
[18]  R. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, USA, 1962.
[19]  P. Arnoux and A. M. Fisher, “Anosov families, renormalization and non-stationary subshifts,” Ergodic Theory and Dynamical Systems, vol. 25, no. 3, pp. 661–709, 2005.
[20]  A. H. Fan and M. Pollicott, “Non-homogeneous equilibrium states and convergence speeds of averaging operators,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 129, no. 1, pp. 99–115, 2000.
[21]  A. M. Fisher, “Nonstationary mixing and the unique ergodicity of adic transformations,” Stochastics and Dynamics, vol. 9, no. 3, pp. 335–391, 2009.
[22]  K. Kahn, S. M. Tollman, M. A. Collinson et al., “Research into health, population and social transitions in rural South Africa: data and methods of the Agincourt health and demographic surveillance system,” Scandinavian Journal of Public Health, vol. 35, supplement 69, pp. 8–20, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133