Objectives. To evaluate the clinical features, physical findings, diagnosis, and laboratory parameters of the patients with propionic acidaemia (PA). Methods. The records of diagnosed cases of propionic acidaemia were reviewed, retrospectively. Results. Twenty-six patients with PA had 133 admissions. The majority (85%) of the patients exhibited clinical manifestations in the 1st week of life. Regarding clinical features, lethargy, fever, poor feeding, vomiting, dehydration, muscular hypotonia, respiratory symptoms, encephalopathy, disturbance of tone and reflexes, and malnutrition were observed in 51–92% admissions. Metabolic crises, respiratory diseases, hyperammonaemia, metabolic acidosis, hypoalbuminaemia, and hypocalcaemia were observed in 30–96% admissions. Pancytopenia, ketonuria, hypoproteinemia, hypoglycaemia, and mildly disturbed liver enzymes were found in 12–41% admissions. Generalised brain oedema was detected in 17% and cerebral atrophy in 25% admissions. Gender-wise odd ratio analysis showed value of 1.9 for lethargy, 1.99 for respiratory diseases, 0.55 for anaemia, and 1.82 for hypocalcaemia. Conclusion. Propionic acidaemia usually presents with wide spectrum of clinical features and disturbances of laboratory parameters in early neonatal age. It is associated with significant complications which deteriorate the patients’ quality of life. Perhaps with early diagnosis of the disease and in time intervention, these may be preventable. 1. Introduction Propionic acidaemia (PA) is a rare autosomal recessive metabolic disease. About 80% are early onset cases (who are diagnosed within three months of age) which classically present in the neonatal period with lethargy, vomiting, refusal to feed, hypotonia, and less frequently with dehydration and seizures [1, 2]. Some patients show milder symptoms and long survival rate, associated with chronic late onset form [3]. In the individuals with PA, serious health problems can be triggered by prolonged fasting, fever or infections, and high protein diet leading to accumulation of toxic substances [2]. Hyperammonaemia is the most common presentation found in 88%, patients [2]. The disease is also characterized by repeated episodes of metabolic acidosis, occasionally seizures, coma, and cerebellar haemorrhages [4]. Hypoglycaemia is a commonly described finding during metabolic decompensations but rarely hyperglycaemia and decreased bone density have also been reported [5]. Commonly observed viral infection and bone marrow suppression with neutropenia and thrombocytopenia in patients with PA might be
References
[1]
J. Schreiber, K. A. Chapman, M. L. Summar et al., “Neurological considerations in propionic acidemia,” Molecular Genetics and Metabolism, vol. 105, no. 1, pp. 10–15, 2012.
[2]
W. Lehnert, W. Sperl, T. Suormala, and E. R. Baumgartner, “Propionic acidaemia: clinical, biochemical and therapeutic aspects. Experience in 30 patients,” European Journal of Pediatrics, vol. 153, supplement 1, pp. S68–S80, 1994.
[3]
N. Kaya, M. Al-Owain, A. Al-Bakheet et al., “Array comparative genomic hybridization (aCGH) reveals the largest novel deletion in PCCA found in a Saudi family with propionic acidemia,” European Journal of Medical Genetics, vol. 51, no. 6, pp. 558–565, 2008.
[4]
V. R. Sutton, K. A. Chapman, A. L. Gropman et al., “Chronic management and health supervision of individuals with propionic acidemia,” Molecular Genetics and Metabolism, vol. 105, no. 1, pp. 26–33, 2012.
[5]
T. M. Alberola, R. Bautista-Llácer, X. Vendrell et al., “Case report: birth of healthy twins after preimplantation genetic diagnosis of propionic acidemia,” Journal of Assisted Reproduction and Genetics, vol. 28, no. 3, pp. 211–216, 2011.
[6]
L. Pena, J. Franks, K. A. Chapman et al., “Natural history of propionic acidemia,” Molecular Genetics and Metabolism, vol. 105, no. 1, pp. 5–9, 2012.
[7]
J. H. Walter, J. E. Wraith, and M. A. Cleary, “Absence of acidosis in the initial presentation of propionic acidaemia,” Archives of Disease in Childhood, vol. 72, no. 3, pp. F197–F199, 1995.
[8]
P. T. Ozand, M. Rashed, G. G. Gascon et al., “Unusual presentations of propionic acidemia,” Brain and Development, vol. 16, pp. 46–57, 1994.
[9]
K. A. Chapman, A. Gropman, E. MacLeod et al., “Acute management of propionic acidemia,” Molecular Genetics and Metabolism, vol. 105, no. 1, pp. 16–25, 2012.
[10]
V. Keane, Assessment of Growth, edited by R. M. Kleigman, R. E. Behrman, H. B. Jenson, B. F. Stanton, WB Saunders, Philadelphia, Pa, USA, 18th edition, 2007.
[11]
H. Moammar, G. Cheriyan, R. Mathew, and N. Al-Sannaa, “Incidence and patterns of inborn errors of metabolism in the Eastern Province of Saudi Arabia, 1983–2008,” Annals of Saudi Medicine, vol. 30, no. 4, pp. 271–277, 2010.
[12]
C. Delgado, C. Macías, M. de la Sierra García-Valdecasas, M. Pérez, L. R. del Portal, and L. M. Jiménez, “Sub acute presentation of propionic acidemia,” Journal of Child Neurology, vol. 22, no. 12, pp. 1405–1407, 2007.
[13]
S. B. van der Meer, F. Poggi, M. Spada et al., “Clinical outcome and long term management of 17 patients with propionic acidaemia,” European Journal of Pediatrics, vol. 155, no. 3, pp. 205–210, 1996.
[14]
X. Huang, L. Yang, F. Tong, R. Yang, and Z. Zhao, “Screening for inborn errors of metabolism in high-risk children: a 3-year pilot study in Zhejiang Province, China,” BMC Pediatrics, vol. 12, article 18, 2012.