全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimizing the Two-Stage Supply Chain Inventory Model with Full Information Sharing and Two Backorders Costs Using Hybrid Geometric-Algebraic Method

DOI: 10.1155/2013/519180

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the case of a two-stage serial supply chain system. This supply chain system involves a single vendor who supplies a single buyer with a single product. The vendor’s production rate is assumed finite. In addition, the demand at the buyer is assumed deterministic. In order to coordinate their replenishment policies and jointly optimize their operational costs, the two supply chain partners fully share their relevant information. For this purpose, we develop an integrated inventory replenishment model assuming linear and fixed backorders costs. Then, we use a hybrid geometric-algebraic method to drive the optimal replenishment policy and the minimum supply chain total cost in a closed form. 1. Introduction Supply chain integration is concerned with functional integration and coordination among the supply chain partners. In an independently managed supply chain, each member in each stage will optimize his own operational costs in a decentralized fashion. Generally, it has been realized that such managerial independence of the supply chain partners may increase the imbalance between demand and supply. Such independence also has been recognized as direct cause of increased costs. This pushed firms towards the full integration of the supply chain resources and the proper coordination of decisions. Researchers report that closer collaboration among the chain partners, increased level of information sharing, and high level of coordination of various decision processes lead to improved customers service and reduced costs. The significant advances in information and communication technologies facilitated the provision and sharing of the business information necessary for efficiency improvement. This, in turn, facilitated the development in the integrated supply chain management. In recent years, numerous articles in supply chain modeling have addressed the issue of inventory coordination. Banerjee [1] introduced the concept of joint economic lot-sizing problem (JELS) for the case of a single vendor and a single purchaser under the assumption of deterministic demand and lot for lot policy. Since then, numerous articles in supply chain modeling focused on the integrated vendor-buyer inventory models and the joint economic lot-sizing problem [2–4]. An extensive review of integrated models which deal with the interaction between a buyer and vendor is presented in [5]. This review classified the literature dealing with the integrated models into four main classes. The first class represents models which deal with joint economic lot sizing policies. The

References

[1]  A. Banerjee, “A joint economic-lot-size model for purchaser and vendor,” Decision Sciences, vol. 17, no. 3, pp. 292–311, 1986.
[2]  M. Khouja, “Optimizing inventory decisions in a multi-stage multi-customer supply chain,” Transportation Research E, vol. 39, no. 3, pp. 193–208, 2003.
[3]  M. Ben-Daya, M. Darwish, and K. Ertogral, “The joint economic lot sizing problem: review and extensions,” European Journal of Operational Research, vol. 185, no. 2, pp. 726–742, 2008.
[4]  M. Khouja and S. K. Goyal, “A review of the joint replenishment problem literature: 1989–2005,” European Journal of Operational Research, vol. 186, no. 1, pp. 1–16, 2008.
[5]  S. K. Goyal and Y. P. Gupta, “Integrated inventory models: the buyer-vendor coordination,” European Journal of Operational Research, vol. 41, no. 3, pp. 261–269, 1989.
[6]  S. K. Goyal and A. Z. Szendrovits, “A constant lot size model with equal and unequal sized batch shipments between production stages,” Engineering Costs and Production Economics, vol. 10, no. 1, pp. 203–210, 1986.
[7]  L. Lu, “A one-vendor multi-buyer integrated inventory model,” European Journal of Operational Research, vol. 81, no. 2, pp. 312–323, 1995.
[8]  S. K. Goyal, “A one-vendor multi-buyer integrated inventory model: a comment,” European Journal of Operational Research, vol. 82, no. 1, pp. 209–210, 1995.
[9]  S. K. Goyal, “A joint economic-lot-size model for a purchaser and vendor: a comment,” Decision Sciences, vol. 19, no. 1, pp. 236–241, 1988.
[10]  M. A. Hoque and S. K. Goyal, “Optimal policy for a single-vendor single-buyer integrated production-inventory system with capacity constraint of the transport equipment,” International Journal of Production Economics, vol. 65, no. 3, pp. 305–315, 2000.
[11]  H. L. Lee, V. Padmanabhan, and S. Whang, “The bullwhip effect in supply chains,” MIT Sloan Management Review, pp. 93–102, Spring 1997.
[12]  J. R. Carter, B. G. Ferrin, and C. R. Carter, “The effect of less-than-truckload rates on the purchase order lot size decision,” Transportation Journal, vol. 34, no. 3, pp. 35–45, 1995.
[13]  T. L. Esper and L. R. Williams, “The value of collaborative transportation management (CTM): its relationship to CPFR and information technology,” Transportation Journal, vol. 42, no. 4, pp. 55–65, 2003.
[14]  J.-M. Chen and T.-H. Chen, “The multi-item replenishment problem in a two-echelon supply chain: the effect of centralization versus decentralization,” Computers and Operations Research, vol. 32, no. 12, pp. 3191–3207, 2005.
[15]  H. M. Wee and C. J. Chung, “A note on the economic lot size of the integrated vendor-buyer inventory system derived without derivatives,” European Journal of Operational Research, vol. 177, no. 2, pp. 1289–1293, 2007.
[16]  L. E. Cárdenas-Barrón, “Optimizing inventory decisions in a multi-stage multi-customer supply chain: a note,” Transportation Research E, vol. 43, no. 5, pp. 647–654, 2007.
[17]  R. W. Grubbstr?m, “Modelling production opportunities—an historical overview,” International Journal of Production Economics, vol. 41, no. 1–3, pp. 1–14, 1995.
[18]  M. E. Seliaman, “Using complete squares method to optimize replenishment policies in a four-stage supply chain with planned backorders,” Advances in Decision Sciences, vol. 2011, Article ID 745896, 9 pages, 2011.
[19]  L. E. Cárdenas-Barrón, “The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2394–2407, 2011.
[20]  M. E. Seliaman and A. Ahmad, “A generalized algebraic model for optimizing inventory decisions in a multi-stage complex supply chain,” Transportation Research E, vol. 45, no. 3, pp. 409–418, 2009.
[21]  J. T. Teng, L. E. Cárdenas-Barrón, and K. R. Lou, “The economic lot size of the integrated vendor-buyer inventory system derived without derivatives: a simple derivation,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5972–5977, 2011.
[22]  S. S. Sana, “A production-inventory model of imperfect quality products in a three-layer supply chain,” Decision Support Systems, vol. 50, no. 2, pp. 539–547, 2011.
[23]  K. J. Chung and L. E. Cárdenas-Barrón, “The complete solution procedure for the EOQ and EPQ inventory models with linear and fixed backorder costs,” Mathematical and Computer Modelling, vol. 55, no. 11-12, pp. 2151–2156, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133