全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Aerobiology and Its Role in the Transmission of Infectious Diseases

DOI: 10.1155/2013/493960

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aerobiology plays a fundamental role in the transmission of infectious diseases. As infectious disease and infection control practitioners continue employing contemporary techniques (e.g., computational fluid dynamics to study particle flow, polymerase chain reaction methodologies to quantify particle concentrations in various settings, and epidemiology to track the spread of disease), the central variables affecting the airborne transmission of pathogens are becoming better known. This paper reviews many of these aerobiological variables (e.g., particle size, particle type, the duration that particles can remain airborne, the distance that particles can travel, and meteorological and environmental factors), as well as the common origins of these infectious particles. We then review several real-world settings with known difficulties controlling the airborne transmission of infectious particles (e.g., office buildings, healthcare facilities, and commercial airplanes), while detailing the respective measures each of these industries is undertaking in its effort to ameliorate the transmission of airborne infectious diseases. 1. Introduction Exposure to airborne pathogens is a common denominator of all human life [1]. With the improvement of research methods for studying airborne pathogens has come evidence indicating that microorganisms (e.g., viruses, bacteria, and fungal spores) from an infectious source may disperse over very great distances by air currents and ultimately be inhaled, ingested, or come into contact with individuals who have had no contact with the infectious source [2–5]. Airborne pathogens present a unique challenge in infectious disease and infection control, for a small percentage of infectious individuals appear to be responsible for disseminating the majority of infectious particles [6]. This paper begins by reviewing the crucial elements of aerobiology and physics that allow infectious particles to be transmitted via airborne and droplet means. Building on the basics of aerobiology, we then explore the common origins of droplet and airborne infections, as these are factors critical to understanding the epidemiology of diverse airborne pathogens. We then discuss several environmental considerations that influence the airborne transmission of disease, for these greatly impact particular environments in which airborne pathogens are commonly believed to be problematic. Finally, we discuss airborne pathogens in the context of several specific examples: healthcare facilities, office buildings, and travel and leisure settings (e.g.,

References

[1]  P. M. V. Martin and E. Martin-Granel, “2,500-year evolution of the term epidemic,” Emerging Infectious Diseases, vol. 12, no. 6, pp. 976–980, 2006.
[2]  V. G. Coronado, C. M. Beck-Sague, M. D. Hutton et al., “Transmission of multidrug-resistant Mycobacterium tuberculosis among persons with human immunodeficiency virus infection in an urban hospital: Epidemiologic and restriction fragment length polymorphism analysis,” Journal of Infectious Diseases, vol. 168, no. 4, pp. 1052–1055, 1993.
[3]  A. B. Bloch, W. A. Orenstein, and W. M. Ewing, “Measles outbreak in a pediatric practice: airborne transmission in an office setting,” Pediatrics, vol. 75, no. 4, pp. 676–683, 1985.
[4]  J. M. LeClair, J. A. Zaia, M. J. Levin, R. G. Congdon, and D. A. Goldmann, “Airborne transmission of chickenpox in a hospital,” The New England Journal of Medicine, vol. 302, no. 8, pp. 450–453, 1980.
[5]  R. L. Riley, C. C. Mills, W. Nyka et al., “Aerial dissemination of pulmonary tuberculosis: a two-year study of contagion in a tuberculosis ward,” American Journal of Epidemiology, vol. 70, no. 2, pp. 185–196, 1959.
[6]  J. Fiegel, R. Clarke, and D. A. Edwards, “Airborne infectious disease and the suppression of pulmonary bioaerosols,” Drug Discovery Today, vol. 11, no. 1-2, pp. 51–57, 2006.
[7]  P. H. Gregory, The Microbiology of the Atmosphere, Wiley, New York, NY, USA, 1973.
[8]  W. F. Wells, “On air-borne infection: study II. Droplets and droplet nuclei,” American Journal of Epidemiology, vol. 20, no. 3, pp. 611–618, 1934.
[9]  Practical Guidelines for Infection Control in Health Care Facilities, vol. 41 of SEARO Regional Publication, World Health Organization, Regional Office for Western Pacific, Manila, Philippines, 2005.
[10]  J. S. Garner, “Guideline for isolation precautions in hospitals,” Infection Control and Hospital Epidemiology, vol. 17, no. 1, pp. 53–80, 1996.
[11]  J. Gralton, E. Tovey, M. L. McLaws, and W. D. Rawlinson, “The role of particle size in aerosolised pathogen transmission: a review,” Journal of Infection, vol. 62, no. 1, pp. 1–13, 2011.
[12]  W. Wells and W. Stone, “On air-borne Infection,” American Journal of Hygiene, vol. 20, pp. 619–627, 1934.
[13]  J. P. Duguid, “The size and the duration of air carriage of respiratory droplets and droplet nuclei,” The Journal of Hygiene, vol. 44, no. 6, pp. 471–479, 1946.
[14]  B. Wang, A. Zhang, J. L. Sun, H. Liu, J. Hu, and L. X. Xu, “Study of SARS transmission via liquid droplets in air,” Journal of Biomechanical Engineering, vol. 127, no. 1, pp. 32–38, 2005.
[15]  X. Xie, Y. Li, A. T. Y. Chwang, P. L. Ho, and W. H. Seto, “How far droplets can move in indoor environments—revisiting the Wells evaporation-falling curve,” Indoor Air, vol. 17, no. 3, pp. 211–225, 2007.
[16]  D. Nuyttens, M. De Schampheleire, K. Baetens, D. Dekeyser, and B. Sonck, “Direct and indirect drift assessment means. Part 3: field drift experiments,” Communications in Agricultural and Applied Biological Sciences, vol. 73, no. 4, pp. 763–767, 2008.
[17]  E. C. Cole and C. E. Cook, “Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies,” American Journal of Infection Control, vol. 26, no. 4, pp. 453–464, 1998.
[18]  J. Qian, D. Hospodsky, N. Yamamoto, et al., “Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom,” Indoor Air, vol. 22, no. 4, pp. 339–351, 2012.
[19]  D. L. Liu and W. W. Nazaroff, “Modeling pollutant penetration across building envelopes,” Atmospheric Environment, vol. 35, no. 26, pp. 4451–4462, 2001.
[20]  W. W. Nazaroff, “Indoor particle dynamics,” Indoor Air, vol. 14, supplement 7, pp. 175–183, 2004.
[21]  G. Oberd?rster, E. Oberd?rster, and J. Oberd?rster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005.
[22]  W. J. Riley, T. E. McKone, A. C. K. Lai, and W. W. Nazaroff, “Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms,” Environmental Science and Technology, vol. 36, no. 2, pp. 200–207, 2002.
[23]  T. L. Thatcher and D. W. Layton, “Deposition, resuspensiion, and penetration of particles within a residence,” Atmospheric Environment, vol. 29, no. 13, pp. 1487–1497, 1995.
[24]  P. Ching, K. Harriman, Y. Li, et al., Infection prevention and control of epidemic- and pandemic-prone acute respiratory diseases in health care: WHO interim guidelines. Document WHO/CDS/EPR/2007.6, Geneva, Switzerland, World Health Organization, pp. 90, 2007.
[25]  J. D. Siegel, E. Rhinehart, M. Jackson, L. Chiarello, and the Healthcare Infection Control Practices Advisory Committee, Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings, 2007, http://www.cdc.gov/ncidod/dhqp/pdf/isolation2007.pdf.
[26]  C. Darquenne, “Aerosol deposition in health and disease,” Journal of Aerosol Medicine and Pulmonary Drug Delivery, vol. 25, no. 3, pp. 140–147, 2012.
[27]  E. Austin, J. Brock, and E. Wissler, “A model for deposition of stable and unstable aerosols in the human respiratory tract,” American Industrial Hygiene Association Journal, vol. 40, no. 12, pp. 1055–1066, 1979.
[28]  P. E. Morrow, “Physics of airborne particles and their deposition in the lung,” Annals of the New York Academy of Sciences, vol. 353, pp. 71–80, 1980.
[29]  W. Stahlhofen, J. Gebhart, J. Heyder, and G. Scheuch, “Deposition pattern of droplets from medical nebulizers in the human respiratory tract,” Bulletin Européen de Physiopathologie Respiratoire, vol. 19, no. 5, pp. 459–463, 1983.
[30]  C. P. Yu and D. B. Taulbee, “A theory of predicting respiratory tract deposition of inhaled particles in man,” Inhaled Particles, no. 1, pp. 35–47, 1975.
[31]  J. D. Brain and P. A. Valberg, “Deposition of aerosol in the respiratory tract,” American Review of Respiratory Disease, vol. 120, no. 6, pp. 1325–1373, 1979.
[32]  T. F. Hatch, “Distribution and deposition of inhaled particles in respiratory tract,” Bacteriological Reviews, vol. 25, pp. 237–240, 1961.
[33]  V. Knight, “Viruses as agents of airborne contagion,” Annals of the New York Academy of Sciences, vol. 353, pp. 147–156, 1980.
[34]  H. C. Yeh, R. F. Phalen, and O. G. Raabe, “Factors influencing the deposition of inhaled particles,” Environmental Health Perspectives, vol. 15, pp. 147–156, 1976.
[35]  M. Nicas, W. W. Nazaroff, and A. Hubbard, “Toward understanding the risk of secondary airborne infection: emission of respirable pathogens,” Journal of Occupational and Environmental Hygiene, vol. 2, no. 3, pp. 143–154, 2005.
[36]  Burt Hill Kosar Rittlemann Associates, “Designing HVAC Systems for Hospital Isolation Rooms,” Pittsburgh, Pa, USA, http://www.burthill.com/.
[37]  “Transmission of Viruses in indoor Air: HVAC System Protection Options,” Federal Interagency Committee for Indoor Air Quality, Environmental Protection Agency. June 2009.
[38]  P. J. Marks, I. B. Vipond, D. Carlisle, D. Deakin, R. E. Fey, and E. O. Caul, “Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant,” Epidemiology and Infection, vol. 124, no. 3, pp. 481–487, 2000.
[39]  C. Christie, D. Mazon, W. Hierholzer Jr., and J. E. Patterson, “Molecular heterogeneity of Acinetobacter baumanii isolates during seasonal increase in prevalence,” Infection Control and Hospital Epidemiology, vol. 16, no. 10, pp. 590–594, 1995.
[40]  R. L. Riley, C. C. Mills, W. Nyka et al., “Aerial dissemination of pulmonary tuberculosis. A two-year study of contagion in a tuberculosis ward,” American Journal of Epidemiology, vol. 70, no. 2, pp. 185–196, 1959.
[41]  C. Beck-Sague, S. W. Dooley, M. D. Hutton et al., “Hospital outbreak of multidrug-resistant Mycobacterium tuberculosis infections: factors in transmission to staff and HIV-infected patients,” Journal of the American Medical Association, vol. 268, no. 10, pp. 1280–1286, 1992.
[42]  Centers for Disease Control and Prevention, “Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care facilities, 1994,” Morbidity and Mortality Weekly Report, vol. 43, no. 13, pp. 1–132, 1994.
[43]  C. E. Haley, R. C. McDonald, L. Rossi, W. D. Jones Jr., R. W. Haley, and J. P. Luby, “Tuberculosis epidemic among hospital personnel,” Infection Control and Hospital Epidemiology, vol. 10, no. 5, pp. 204–210, 1989.
[44]  C. B. Bridges, M. J. Kuehnert, and C. B. Hall, “Transmission of influenza: implications for control in health care settings,” Clinical Infectious Diseases, vol. 37, no. 8, pp. 1094–1101, 2003.
[45]  J. M. LeClair, J. A. Zaia, M. J. Levin, R. G. Congdon, and D. A. Goldmann, “Airborne transmission of chickenpox in a hospital,” The New England Journal of Medicine, vol. 302, no. 8, pp. 450–453, 1980.
[46]  D. M. Musher, “How contagious are common respiratory tract infections?” The New England Journal of Medicine, vol. 348, no. 13, pp. 1256–1266, 2003.
[47]  M. R. Moser, T. R. Bender, H. S. Margolis, et al., “An outbreak of influenza aboard a commercial airliner,” American Journal of Epidemiology, vol. 110, no. 1, pp. 1–6, 1979.
[48]  E. C. Dick, L. C. Jennings, K. A. Mink, et al., “Aerosol transmission of rhinovirus colds,” Journal of Infectious Diseases, vol. 156, no. 3, pp. 442–448, 1987.
[49]  P. Steinberg, R. J. White, S. L. Fuld, R. R. Gutekunst, R. M. Chanock, and L. B. Senterfit, “Ecology of Mycoplasma pneumoniae infections in marine recruits at Parris Island, South Carolina,” American Journal of Epidemiology, vol. 89, no. 1, pp. 62–73, 1969.
[50]  R. H. Alford, J. A. Kasel, P. J. Gerone, and V. Knight, “Human influenza resulting from aerosol inhalation,” Proceedings of the Society for Experimental Biology and Medicine, vol. 122, no. 3, pp. 800–804, 1966.
[51]  M. Varia, S. Wilson, S. Sarwal et al., “Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada,” Canadian Medical Association Journal, vol. 169, no. 4, pp. 285–292, 2003.
[52]  D. C. Scales, K. Green, A. K. Chan et al., “Illness in intensive care staff after brief exposure to severe acute respiratory syndrome,” Emerging Infectious Diseases, vol. 9, no. 10, pp. 1205–1210, 2003.
[53]  W. H. Seto, D. Tsang, R. W. H. Yung et al., “Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS),” The Lancet, vol. 361, no. 9368, pp. 1519–1520, 2003.
[54]  M. Hamburger and O. H. Robertson, “Expulsion of group a hemolytic streptococci in droplets and droplet nuclei by sneezing, coughing and talking,” The American Journal of Medicine, vol. 4, no. 5, pp. 690–701, 1948.
[55]  P. R. Chadwick and R. McCann, “Transmission of a small round structured virus by vomiting during a hospital outbreak of gastroenteritis,” Journal of Hospital Infection, vol. 26, no. 4, pp. 251–259, 1994.
[56]  J. F. Gehanno, L. Kohen-Couderc, J. F. Lemeland, and J. Leroy, “Nosocomial meningococcemia in a physician,” Infection Control and Hospital Epidemiology, vol. 20, no. 8, pp. 564–565, 1999.
[57]  R. D. Feigin, C. J. Baker, L. A. Herwaldt, et al., “Epidemic meningococcal disease in an elementary-school classroom,” The New England Journal of Medicine, vol. 307, no. 20, pp. 1255–1257, 1982.
[58]  Centers for Disease Control and Prevention, “Hospital-acquired meningococcemia,” Morbidity and Mortality Weekly Report, vol. 27, p. 358, 1978.
[59]  D. S. Prince, C. Astry, S. Vonderfecht, et al., “Aerosol transmission of experimental rotavirus infection,” Pediatric Infectious Disease, vol. 5, no. 2, pp. 218–222, 1986.
[60]  W. J. Kowalski, “Air-treatment systems for controlling hospital-acquired infections,” HPAC Engineering, vol. 79, no. 1, pp. 28–48, 2007.
[61]  T. C. Eickhoff, “Airborne nosocomial infection: a contemporary perspective,” Infection Control and Hospital Epidemiology, vol. 15, no. 10, pp. 663–672, 1994.
[62]  F. M. Blachere, W. G. Lindsley, T. A. Pearce et al., “Measurement of airborne influenza virus in a hospital emergency department,” Clinical Infectious Diseases, vol. 48, no. 4, pp. 438–440, 2009.
[63]  “Swine H1N1 Influenza A: Transmission of Viruses in Indoor Air: HVAC System Protection Options,” Federal Interagency Committee for Indoor Air Quality. Environmental Protection Agency. June 2009.
[64]  M. W. Jennison, “Atomizing of mouth and nose secretions into the air as revealed by high-speed photography,” in Aerobiology, vol. 17, pp. 106–128, 1942.
[65]  F. E. Buckland and D. A. J. Tyrrell, “Experiments on the spread of colds. 1. Laboratory studies on the dispersal of nasal secretion,” The Journal of Hygiene, vol. 62, pp. 365–377, 1964.
[66]  P. J. Gerone, R. B. Couch, G. V. Keefer, R. G. Douglas, E. B. Derrenbacher, and V. Knight, “Assessment of experimental and natural viral aerosols,” Bacteriological Reviews, vol. 30, no. 3, pp. 576–588, 1966.
[67]  R. B. Couch, T. R. Cate, R. G. J. Douglas, P. J. Gerone, and V. Knight, “Effect of route of inoculation on experimental respiratory viral disease in volunteers and evidence for airborne transmission,” Bacteriological reviews, vol. 30, no. 3, pp. 517–529, 1966.
[68]  C. S. Lee and J. H. Lee, “Dynamics of clinical symptoms in patients with pandemic influenza A (H1N1),” Clinical Microbiology and Infection, vol. 16, no. 4, pp. 389–390, 2010.
[69]  A. S. Monto, S. Gravenstein, M. Elliott, M. Colopy, and J. Schweinle, “Clinical signs and symptoms predicting influenza infection,” Archives of Internal Medicine, vol. 160, no. 21, pp. 3243–3247, 2000.
[70]  Environmental Protection Agency, “An introduction to indoor air quality—Biological Pollutants,” Washington, DC, USA, November 2007.
[71]  T. A. Myatt and D. K. Milton, “Indoor pollutants: endotoxins,” in Indoor Air Quality Handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, Eds., pp. 42.1–42.14, McGraw-Hill, New York, NY, USA, 2001.
[72]  T. A. Platts-Mills, “Indoor pollutants: allergens derived from arthropods and domestic animals,” in Indoor Air Quality Handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, Eds., pp. 43.1–43.15, McGraw-Hill, New York, NY, USA, 2001.
[73]  M. L. Muilenberg, “Indoor pollutants: pollen in indoor air: sources, exposures, and health effects,” in Indoor Air Quality Handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, Eds., pp. 44.1–44.18, McGraw-Hill, New York, NY, USA, 2001.
[74]  H. A. Burge, “Indoor pollutants: the fungi,” in Indoor Air Quality Handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, Eds., pp. 45.1–45.33, McGraw-Hill, New York, NY, USA, 2001.
[75]  C. Y. Rao, “Indoor pollutants: toxigenic fungi in the indoor environment,” in Indoor Air Quality Handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, Eds., pp. 46.1–46.19, McGraw-Hill, New York, NY, USA, 2001.
[76]  E. A. Nardell, “Indoor pollutants: tuberculosis,” in Indoor Air Quality Handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, Eds., pp. 47.1–47.13, McGraw-Hill, New York, NY, USA, 2001.
[77]  B. E. Barry, “Indoor pollutants: legionella,” in Indoor Air Quality Handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, Eds., pp. 48.1–48.15, McGraw-Hill, New York, NY, USA, 2001.
[78]  Indoor Air Facts No. 4 (revised) Sick building syndrome, http://www.epa.gov/iaq/pdfs/sick_building_factsheet.pdf.
[79]  J. W. Tang, “The effect of environmental parameters on the survival of airborne infectious agents,” Journal of the Royal Society Interface, vol. 6, no. 6, pp. S737–S746, 2009.
[80]  G. J. Harper, “Airborne micro-organisms: survival tests with four viruses,” The Journal of Hygiene, vol. 59, pp. 479–486, 1961.
[81]  A. C. Lowen, S. Mubareka, J. Steel, and P. Palese, “Influenza virus transmission is dependent on relative humidity and temperature,” PLoS Pathogens, vol. 3, no. 10, pp. 1470–1476, 2007.
[82]  A. V. Arundel, E. M. Sterling, J. H. Biggin, and T. D. Sterling, “Indirect health effects of relative humidity in indoor environments,” Environmental Health Perspectives, vol. 65, pp. 351–361, 1986.
[83]  B. A. Handley and A. J. F. Webster, “Some factors affecting airborne survival of Pseudomonas fluorescens indoors,” Journal of Applied Bacteriology, vol. 75, no. 1, pp. 35–42, 1993.
[84]  B. A. Handley and A. J. F. Webster, “Some factors affecting the airborne survival of bacteria outdoors,” Journal of Applied Bacteriology, vol. 79, no. 4, pp. 368–378, 1995.
[85]  R. Ehrlich and S. Miller, “Survival of airborne Pasteurella tularensis at different atmospheric temperatures,” Applied Microbiology, vol. 25, no. 3, pp. 369–372, 1973.
[86]  P. S. Dinter and W. Muller, “The tenacity of bacteria in the airborne state. VI. Tenacity of airborne S. senftenberg,” Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene B, vol. 186, no. 3, pp. 278–288, 1988.
[87]  R. Ehrlich, S. Miller, and R. L. Walker, “Relationship between atmospheric temperature and survival of airborne bacteria,” Applied Microbiology, vol. 19, no. 2, pp. 245–249, 1970.
[88]  W. Müller and P. S. Dinter, “The tenacity of bacteria in the airborne state. IV: experimental studies on the viability of airborne E. coli 0:78 under the influence of different temperature and humidity,” Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene A, vol. 262, no. 3, pp. 304–312, 1986.
[89]  C. M. Wathes, K. Howard, and A. J. F. Webster, “The survival of Escherichia coli in an aerosol at air temperatures of 15 and 30?°C and a range of humidities,” The Journal of Hygiene, vol. 97, no. 3, pp. 489–496, 1986.
[90]  R. Stehmann, J. Rottmayer, K. Zschaubitz, and G. Mehlhorn, “The tenacity of Bordetella bronchiseptica in the air,” Zentralblatt für Veterin?rmedizin B, vol. 39, no. 7, pp. 546–552, 1992.
[91]  H. J. H. Theunissen, N. A. Lemmens-den Toom, A. Burggraaf, E. Stolz, and M. F. Michel, “Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols,” Applied and Environmental Microbiology, vol. 59, no. 8, pp. 2589–2593, 1993.
[92]  D. N. Wright, G. D. Bailey, and L. J. Goldberg, “Effect of temperature on survival of airborne Mycoplasma pneumoniae,” Journal of Bacteriology, vol. 99, no. 2, pp. 491–495, 1969.
[93]  B. Marthi, V. P. Fieland, M. Walter, and R. J. Seidler, “Survival of bacteria during aerosolization,” Applied and Environmental Microbiology, vol. 56, no. 11, pp. 3463–3467, 1990.
[94]  S. J. Webb, “Factors affecting the viability of air-borne bacteria. I. Bacteria aerosolized from distilled water,” Canadian Journal of Microbiology, vol. 5, no. 6, pp. 649–669, 1959.
[95]  W. D. Won and H. Ross, “Effect of diluent and relative humidity on apparent viability of airborne Pasteurella pestis,” Applied Microbiology, vol. 14, no. 5, pp. 742–745, 1966.
[96]  E. W. Dunklin and T. T. Puck, “The lethal effect of relative humidity on air-borne bacteria,” The Journal of Experimental Medicine, vol. 87, pp. 87–101, 1948.
[97]  C. S. Cox, “Airborne bacteria and viruses,” Science Progress, vol. 73, no. 292, part 4, pp. 469–499, 1989.
[98]  C. S. Cox, “The microbiology of air,” in Topley & Wilson'S Microbiology and Microbial Infections, L. Collier, A. Balows, and M. Sussman, Eds., pp. 339–350, Arnold, Oxford University Press, London, UK, 9th edition, 1998.
[99]  R. P. Vonberg and P. Gastmeier, “Nosocomial aspergillosis in outbreak settings,” Journal of Hospital Infection, vol. 63, no. 3, pp. 246–254, 2006.
[100]  B. D. Hardin, B. J. Kelman, and A. Saxon, “Adverse human health effects associated with molds in the indoor environment,” Journal of Occupational and Environmental Medicine, vol. 45, pp. 470–478, 2003.
[101]  S. Karra and E. Katsivela, “Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site,” Water Research, vol. 41, no. 6, pp. 1355–1365, 2007.
[102]  Protecting Building Occupants from Biological Threats: Building Vulnerabilities and Associated Risks to Occupants. UPMC Center for Biosecurity, http://www.upmc-biosecurity.org/website/resources/multimedia/2008-protecting_building_occupants/building_vulnerability.html.
[103]  Protecting Building Occupants from Biological Threats: Reducing the Risk of Occupants' Exposure to Biological Threats: Practical Steps for Building Owners. UPMC Center for Biosecurity, http://www.upmc-biosecurity.org/website/resources/multimedia/2008-protecting_building_occupants/index.html.
[104]  American Society of Heating, Refrigerating, and Air-Conditioning Engineers. ANSI/ASHRAE Standard 55-2004: Thermal Environmental Conditions for Human Occupancy. Atlanta, Ga, USA, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004.
[105]  American Society of Heating, Refrigerating, and Air-Conditioning Engineers. ANSI/ASHRAE Standard 62.1-2004: Ventilation for Acceptable Indoor Air Quality. Atlanta, Ga, USA, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004.
[106]  American Society of Heating, Refrigerating, and Air-Conditioning Engineers. ANSI/ASHRAE/IESNA Standard 90.1-2004: Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta, Ga, USA, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004.
[107]  American Society of Heating, Refrigerating and Air-Conditioning Engineers, Report of Presidential Ad Hoc Committee for Building Health and Safety under Extraordinary Incidents on: Risk Management Guidance for Health, Safety, and Environmental Security under Extraordinary Incidents. Atlanta, Ga, USA, American Society of Heating, Refrigerating and Air-Conditioning Engineers, January 2003.
[108]  D. W. Bearg, “HVAC systems,” in Indoor Air Quality Handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, Eds., pp. 7.1–7.18, McGraw-Hill, New York, NY, USA, 2001.
[109]  P. J. Hitchcock, M. Mair, T. V. Inglesby et al., “Improving performance of HVAC systems to reduce exposure to aerosolized infectious agents in buildings: recommendations to reduce risks posed by biological attacks,” Biosecurity and Bioterrorism, vol. 4, no. 1, pp. 41–54, 2006.
[110]  D. Schwegman, Prevention of Cross Transmission of Microorganisms is Essential to Preventing Outbreaks of Hospital-Acquired Infections, Emory University, 2009.
[111]  Speech Delivered by Dr. Margaret Chan, Director General of the World Health Organization, at a conference in Copenhagen, Denmark. March 2012, http://www.who.int/dg/speeches/2012/amr_20120314/en/index.html.
[112]  C. O. Solberg, “Spread of Staphylococcus aureus in hospitals: causes and prevention,” Scandinavian Journal of Infectious Diseases, vol. 32, no. 6, pp. 587–595, 2000.
[113]  A. Nevalainen, K. Willeke, F. Liebhaber, J. Pastuszka, H. Burge, and E. Henningson, “Bioaerosol sampling,” in Aerosol Measurement, K. Willeke and P. A. Baron, Eds., pp. 471–492, D. Van Nostrand Reinhold Company, New York, NY, USA, 1993.
[114]  M. K. Owen, D. S. Ensor, and L. E. Sparks, “Airborne particle sizes and sources found in indoor air,” Atmospheric Environment A, vol. 26, no. 12, pp. 2149–2162, 1992.
[115]  G. Brankston, L. Gitterman, Z. Hirji, et al., “Transmission of influenza A in human beings,” The Lancet Infectious Diseases, vol. 7, no. 4, pp. 257–265, 2007.
[116]  R. Tellier, “Aerosol transmission of influenza A virus: a review of new studies,” Journal of the Royal Society Interface, vol. 6, supplement 6, pp. S783–S790, 2009.
[117]  P. S. Brachman, “Hospital-acquired infection—airborne or not?” in Proceedings of the International Conference on Hospital-Acquired Infections, P. S. Brachman and T. C. Eickhoff, Eds., pp. 189–192, American Hospital Association, Chicago, Ill, USA, 1971.
[118]  R. B. Kundsin, “Documentation of airborne infection during surgery,” Annals of the New York Academy of Sciences, vol. 353, pp. 255–261, 1980.
[119]  P. Ninomura, P. E. Rousseau, and J. Bartley, “Updated guidelines for design and construction of hospital and health care facilities,” ASHRAE Journal, vol. 48, no. 6, supplement, pp. H33–H37, 2006.
[120]  E. Galson and J. Guisbond, “Hospital sepsis control and TB transmission,” ASHRAE Journal, vol. 37, no. 5, pp. 48–52, 1995.
[121]  F. Memarzadeh and A. P. Manning, “Comparison of operating room ventilation systems in the protection of the surgical site,” ASHRAE Transactions, vol. 108, no. 2, pp. 3–15, 2002.
[122]  ASHRAE/ASHE Standard, 170-2008. Ventilation of Health Care Facilities. Atlanta, Ga, USA, American Society of Heating, Refrigerating and Air-conditioning Engineers, 2008.
[123]  National Institutes of Health Biosafety Level 3-Laboratory Certification Requirements, http://www.biosafety.moh.gov.sg/home/uploadedFiles/Common/BSL3_CertificationRequirements_FINAL.pdf.
[124]  F. Memarzadeh and W. Xu, “Role of air changes per hour in possible transmission of airborne infections,” Building Simulation, vol. 5, no. 1, pp. 15–28, 2012.
[125]  Writing Committee (CDC, WHO, the Union), Tuberculosis infection control in the era of expanding HIV care and treatment: an addendum to WHO guidelines for the prevention of tuberculosis in heath care facilities in resource limited settings. Geneva, Switzerland, WHO, pp. 85, 1999, http://whqlibdoc.who.int/hq/1999/WHO_TB_99.269_ADD_eng.pdf.
[126]  F. Scano, Policy on TB infection control in health-care facilities, congregate settings and households. Geneva, Switzerland, World Health Organization, 2009, pp. 40, Publication No. WHO/HTM/TB/2009.419.
[127]  P. A. Jensen, L. A. Lambert, M. F. Iademarco, and R. Ridzon, “Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings,” Morbidity and Mortality Weekly Report, vol. 54, no. 17, pp. 1–141, 2005.
[128]  Centers for Disease Control and Prevention, “Plan to combat extensively drug-resistant tuberculosis recommendations of the Federal Tuberculosis Task Force,” Morbidity and Mortality Weekly Report, vol. 58, no. 3, pp. 1–43, 2009.
[129]  G. Sandhu, F. Battaglia, B. K. Ely, D. Athanasakis, R. Montoya, et al., “Discriminating active from latent tuberculosis in patients presenting to community clinics,” PLoS ONE, vol. 7, no. 5, Article ID e38080, 2012.
[130]  S. V. Shenoi, A. Roderick Escombe, and G. Friedlan, “Transmission of drug-susceptible and drug-resistant tuberculosis and the critical importance of airborne infection control in the era of HIV infection and highly active antiretroviral therapy rollouts,” Clinical Infectious Diseases, vol. 50, no. 3, pp. S231–S237, 2010.
[131]  A. R. Escombe, D. A. J. Moore, J. S. Friedland, C. A. Evans, and R. H. Gilman, “Natural ventilation for prevention of airborne contagion,” PLoS Medicine, vol. 4, no. 2, article e68, 2007.
[132]  A. R. Escombe, D. A. Moore, R. H. Gilman et al., “The infectiousness of tuberculosis patients coinfected with HIV,” PLoS Medicine, vol. 5, no. 9, article e188, 2008.
[133]  A. R. Escombe, C. Oeser, R. H. Gilman et al., “The detection of airborne transmission of tuberculosis from HIV-infected patients, using an in vivo air sampling model,” Clinical Infectious Diseases, vol. 44, no. 10, pp. 1349–1357, 2007.
[134]  A. R. Escombe, D. A. J. Moore, R. H. Gilman et al., “Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmissio,” PLoS Medicine, vol. 6, no. 3, Article ID e1000043, 2009.
[135]  E. A. Nardell, S. J. Bucher, P. W. Brickner et al., “Safety of upper-room ultraviolet germicidal air disinfection for room occupants: results from the Tuberculosis Ultraviolet Shelter Study,” Public Health Reports, vol. 123, no. 1, pp. 52–60, 2008.
[136]  N. Pavelchak, R. DePersis, M. London, et al., “Identification of factors that disrupt negative air pressurization of respiratory isolation rooms,” Infection Control and Hospital Epidemiology, vol. 21, no. 3, pp. 191–195, 2000.
[137]  V. J. Fraser, K. Johnson, J. Primack, M. Jones, G. Medoff, and W. C. Dunagan, “Evaluation of rooms with negative pressure ventilation used for respiratory isolation in seven midwestern hospitals,” Infection Control and Hospital Epidemiology, vol. 14, no. 11, pp. 623–628, 1993.
[138]  M. L. Pearson, J. A. Jereb, T. R. Frieden et al., “Nosocomial transmission of multidrug-resistant Mycobacterium tuberculosis: a risk to patients and health care workers,” Annals of Internal Medicine, vol. 117, no. 3, pp. 191–196, 1992.
[139]  D. Menzies, A. Fanning, L. Yuan, J. FitzGerald, and The Canadian Collaborative Group in Hospital-acquired Transmission of TB, “Hospital ventilation and risk for tuberculous infection in Canadian health care workers,” Annals of Internal Medicine, vol. 133, no. 10, pp. 779–789, 2000.
[140]  C. Beck-Sague, S. W. Dooley, M. D. Hutton et al., “Hospital outbreak of multidrug-resistant Mycobacterium tuberculosis infections: factors in transmission to staff and HIV-infected patients,” Journal of the American Medical Association, vol. 268, no. 10, pp. 1280–1286, 1992.
[141]  A. Mangili and M. A. Gendreau, “Transmission of infectious diseases during commercial air travel,” The Lancet, vol. 365, no. 9463, pp. 989–996, 2005.
[142]  Aviation Health Working Group, “Health in aircraft cabins-stage 2. UK Dept Transportation-Aviation,” 2001, http://www.biomedsearch.com/sci/Department-Transport-Health-in-Aircraft/0032891574.html.
[143]  J. Chin, Ed., Control of Communicable Diseases: Manual, American Public Health Association, Washington, DC, USA, 16th edition, 2000.
[144]  Infection Control Committee, Infection Control Manual, University of Virginia Health System, Charlottesville, VA, USA, 2004.
[145]  M. A. Gendreau and C. DeJohn, “Responding to medical events during commercial airline flights,” The New England Journal of Medicine, vol. 346, no. 14, pp. 1067–1073, 2002.
[146]  E. T. Ryan, M. E. Wilson, and K. C. Kain, “Illness after international travel,” The New England Journal of Medicine, vol. 347, no. 7, pp. 505–516, 2002.
[147]  National Research Council, The Airline Cabin Environment: Air Quality and Safety, National Academic Press, Washington, DC, USA, 1986.
[148]  World Health Organization, Tuberculosis and air travel: guidelines for prevention and control. WHO/TB98. 256. Geneva, Switzerland, World Health Organization, 1998.
[149]  National Research Council, The Airline Cabin Environment and the Health of Passengers, National Academic Press, Washington, DC, USA, 2002.
[150]  Select Committee on Science and Technology, “Air travel and health,” Fifth Report, House of Lords, London, UK, 2000, http://www.publications.parliament.uk/pa/ld199900/ldselect/ldsctech/121/12101.htm.
[151]  T. A. Kenyon, S. E. Valway, W. W. Ihle, I. M. Onorato, and K. G. Castro, “Transmission of multidrug-resistant Mycobacterium tuberculosis during a long airplane flight,” The New England Journal of Medicine, vol. 334, no. 15, pp. 933–938, 1996.
[152]  S. J. Olsen, H. L. Chang, T. Y. Cheung, et al., “Transmission of severe acute respiratory syndrome on aircraft,” The New England Journal of Medicine, vol. 349, pp. 2416–2422, 2003.
[153]  World Health Organization, Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). WHO/CDS/CSR/GAR/ 2003.11, Geneva, Switzerland, World Health Organization, 2003.
[154]  A. G. Marsden, “Influenza outbreak related to air travel,” Medical Journal of Australia, vol. 179, no. 3, pp. 172–173, 2003.
[155]  Centers for Disease Control and Prevention, “Exposure to patients with meningococcal disease on aircrafts-United States, 1999–2001,” Morbidity and Mortality Weekly Report, vol. 50, pp. 485–489, 2001.
[156]  Centers for Disease Control and Prevention, “Exposure of passengers and flight crew to Mycobacterium tuberculosis on commercial aircraft, 1992–1995,” Morbidity and Mortality Weekly Report, vol. 44, pp. 137–140, 1995.
[157]  M. R. Withers and G. W. Christopher, “Aeromedical evacuation of biological warfare casualties: a treatise on infectious diseases on aircraft,” Military Medicine, vol. 165, no. 11, supplement 3, pp. 1–21, 2000.
[158]  G. Ko, K. M. Thompson, and E. A. Nardell, “Estimation of tuberculosis risk on a commercial airliner,” Risk Analysis, vol. 24, no. 2, pp. 379–388, 2004.
[159]  E. A. Nardell, J. Keegan, S. A. Cheney, and S. C. Etkind, “Airborne Infection: theoretical limits of protection achievable by building ventilation,” American Review of Respiratory Disease, vol. 144, no. 2, pp. 302–306, 1991.
[160]  R. Riley and E. Nardell, “Clearing the air,” The American Review of Respiratory Disease, vol. 139, pp. 1286–1294, 1989.
[161]  J. N. Zitter, P. D. Mazonson, D. P. Miller, S. B. Hulley, and J. R. Balmes, “Aircraft cabin air recirculation and symptoms of the common cold,” Journal of the American Medical Association, vol. 288, no. 4, pp. 483–486, 2002.
[162]  C. R. Driver, S. E. Valway, W. M. Morgan, I. M. Onorato, and K. G. Castro, “Transmission of Mycobacterium tuberculosis associated with air travel,” Journal of the American Medical Association, vol. 272, no. 13, pp. 1031–1035, 1994.
[163]  J. W. McFarland, C. Hickman, M. T. Osterholm, and K. L. MacDonald, “Exposure to Mycobacterium tuberculosis during air travel,” The Lancet, vol. 342, no. 8863, pp. 112–113, 1993.
[164]  P. D. Wang, “Two-step tuberculin testing of passengers and crew on a commercial airplane,” American Journal of Infection Control, vol. 28, no. 3, pp. 233–238, 2000.
[165]  M. Hardiman, “SARS: global epidemiology and control,” in 41st Annual Meeting of Infectious Disease Society of America, San Diego, Calif, USA, 2003.
[166]  World Health Organization, “Update 62-more than 8000 cases reported globally, situation in Taiwan, data on in-flight transmission, report on Henan province, China,” Geneva, Switzerland, WHO, 2003, http://www.who.int/csr/don/2003_05_22/en/print.html.
[167]  A. Wilder-Smith, H. N. Leong, and J. S. Villacian, “In-flight transmission of severe acute respiratory syndrome (SARS): a case report,” Journal of Travel Medicine, vol. 10, no. 5, pp. 299–300, 2003.
[168]  K. Sato, T. Morishita, E. Nobusawa et al., “Surveillance of influenza viruses isolated from travellers at Nagoya international airport,” Epidemiology and Infection, vol. 124, no. 3, pp. 507–514, 2000.
[169]  J. F. Perz, A. S. Craig, and W. Schaffner, “Mixed outbreak of parainfluenza type 1 and influenza B associated with tourism and air travel,” International Journal of Infectious Diseases, vol. 5, no. 4, pp. 189–191, 2001.
[170]  V. L. Laurel, C. C. De Witt, Y. A. Geddie et al., “An outbreak of influenza A caused by imported virus in the United States, July 1999,” Clinical Infectious Diseases, vol. 32, no. 11, pp. 1639–1642, 2001.
[171]  Centers for Disease Control and Prevention, “Multistate investigation of measles among adoptees from China,” Morbidity and Mortality Weekly Report, vol. 53, no. 14, pp. 309–310, 2004.
[172]  Centers for Disease Control and Prevention, “Interstate importation of measles following transmission in an airport-California, Washington, 1982,” Morbidity and Mortality Weekly Report, vol. 32, no. 16, pp. 210–215, 1983.
[173]  P. Slater, E. Anis, and A. Bashary, “An outbreak of measles associated with a New York/Tel Aviv flight,” Travel Medicine International, vol. 13, no. 3, pp. 92–95, 1995.
[174]  M. S. Ho, R. I. Glass, S. S. Monroe et al., “Viral gastroenteritis aboard a cruise ship,” The Lancet, vol. 2, no. 8669, pp. 961–965, 1989.
[175]  K. Alibek, Biohazard, Dell Publishing, New York, NY, USA, 1999.
[176]  W. Seth Carus, Bioterrorism and Biocrimes: The Illicit Use of Biological Agents in the 20th Century, National Defense University, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133