In crude oil production from brown fields or heavy oil, there is production of water in oil emulsions which can either be controlled or avoided. This emulsion resulted in an increase in viscosity which can seriously affect the production of oil from sand phase up to flow line. Failure to separate the oil and water mixture efficiently and effectively could result in problems such as overloading of surface separation equipments, increased cost of pumping wet crude, and corrosion problems. Light hydrocarbon diluent was added in varied proportions to three emulsion samples collected from three different oil fields in Niger delta, Nigeria, to enhance the demulsification of crude oil emulsion. The viscosity, total petroleum hydrocarbon, and quality of water were evaluated. The viscosity of the three emulsions considered reduced by 38, 31, and 18%. It is deduced that the increase in diluent blended with emulsion leads to a corresponding decrease in the value of viscosity. This in turn enhanced the rate of demulsification of the samples. The basic sediment and water (BS&W) of the top dry oil reduces the trace value the three samples evaluated, and with optimum value of diluent, TPH values show that the water droplets are safe for disposal and for other field uses. 1. Introduction Emulsion is defined as a system in which one liquid is relatively distributed or dispersed, in the form of droplets, in another substantially immiscible liquid. Emulsions have long been of great practical interest due to their widespread occurrence in everyday life which occurs due to reliance of the behaviour of the emulsion on the magnitude and range of the surface interaction. They may be found in important areas such as food, cosmetics, pulp and paper, biological fluids, pharmaceutical, agricultural industry, and petroleum engineering. In production and flow assurance, the two commonly encountered emulsion types are water droplet dispersed in the oil phase and termed as water-in-oil emulsion (W/O) and if the oil is the dispersed phase, it is termed oil-in-water (O/W) emulsion [1]. Water-in-oil crude oil emulsions may be encountered at all stages in the petroleum production and in processing industry. With presence of water, they are typically undesirable and can result in high pumping costs and pipeline corrosions and increase the cost of transportation [2]. Reduced throughput is needed to introduce special handling equipment, contribute to plugging of gravel pack at the sand phase [3], and affect oil spill cleanup [4]. In their research work, Micheal et al. used bottle test method
References
[1]
D. Langevin, S. Poteau, I. Hénaut, and J. F. Argillier, “Crude oil emulsion properties and their application to heavy oil transportation,” Oil and Gas Science and Technology, vol. 59, no. 5, pp. 511–521, 2004.
[2]
M. Hanapi, S. Ariffin, A. Aizan, and I. R. Siti, “Study on demulsifier formulation for treating malaysian crude oil emulsion,” Tech. Rep., Department of Chemical Engineering, Universiti Technologi Malaysia, 2006.
[3]
R. Espinoza and W. Kleinitz, “The impact of Hidden Emulsion on Oil Prooducing wells—stimulation concept and field result,” in Proceedings of the SPE European Formation Damage, The Hague, The Netherlands, 2003, SPE paper 00082252.
[4]
F. Merv and F. Ben, “Studies of the formation process of water-in-oil emulsions,” Marine Pollution Bulletin, vol. 47, no. 9–12, pp. 369–396, 2003.
[5]
K. P. Micheal, C. Shaokum, and C. M. Samuel, “The key to Predicting Emulsion stability: solid content,” in Proceedings of the SPE International Symposium on Oil Field Chemistry, Houston, Tex, USA, 2005, SPE paper 93008.
[6]
D. Christophe, A. David, S. Anne, G. Alain, and B. Patrick, “Stability of water/crude oil emulsions based on interfacial dilatational rheology,” Journal of Colloid and Interface Science, vol. 297, no. 2, pp. 785–791, 2006.
[7]
M. Rondón, J. C. Pereira, P. Bouriat, A. Graciaa, J. Lachaise, and J. L. Salager, “Breaking of water-in-crude-oil emulsions. 2. Influence of asphaltene concentration and diluent nature on demulsifier action,” Energy and Fuels, vol. 22, no. 2, pp. 702–707, 2008.
[8]
E. J. Ekott and E. J. Akpabio, “Influence of asphaltene content on demulsifiers performance in crude oil emulsions,” Journal of Engineering and Applied Sciences, vol. 6, no. 3, pp. 200–204, 2011.
[9]
K. Sunil, A. Abdullah, and N. S. Meeranpillal, “An Investigative study of potential emulsion problems before field development,” in Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, Tex, USA, 2007, SPE paper 102856.
[10]
V. Efeovbokhan, T. Akinola, and F. Hymore, “Performance evaluation of formulated and commercially available de-emulsifiers,” in Nigerian Society of Chemical Engineers Proceedings (NSChE '10), vol. 40, pp. 87–99, 2010.
[11]
D. T. Nguyen and N. Sadeghi, “Selection of the right demulsifier for chemical enhanced oil recovery,” in International Symposium on Oilfield Chemistry, The Woodlands, Tex, USA, April 2011.
[12]
C. I. Oseghale, E. J. Akpabio, and G. Udottong, “Breaking of oil-water emulsion for the improvement of oil recovery operations in the Niger Delta Oilfields,” International Journal of Engineering and Technology, vol. 2, no. 11, pp. 1–7, 2012.
[13]
B. Fu, “Flow assurance—a technological review of Managing fluid behaviour and solid deposition to Ensure optimum flow,” in Proceedings of the 7th Annual International Forum for deepwater Technologies (Deeptec '00), Aberdeen, UK, January 2000.
[14]
C. No?k, H. Malot, C. Dalmazzone, and A. Mouret, “Encapsulation of crude oil emulsions,” Oil and Gas Science and Technology, vol. 59, no. 5, pp. 535–546, 2004.
[15]
M. Nuraini, H. N. Abdurahman, and A. M. S. Kholijah, “Effect of chemical breaking agents on water-in crude oil emulsion system,” International Journal of Chemical and Environmental Engineering, vol. 2, no. 4, pp. 1–5, 2011.
[16]
K. P. Micheal, C. Shaokum, A. M. Robert, and C. M. Samuel, “Classifying crude oil emulsion using chemical demulsifiers and stastical analyses,” in Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, Colo, USA, 2003, SPE paper 84610.
[17]
S. D. Taylor, “Investigations into the Electrical and rheological Behaviour of W/O—emulsions in high voltage Gradients,” Colloid & Surfaces, vol. 29, pp. 25–51, 1988.
[18]
D. G. Thompson, A. S. Taylor, and D. E. Graham, “Emulsification and demulsification related to crude oil production,” Colloid & Surfaces, vol. 15, pp. 175–189, 1987.
[19]
T. J. Jones, E. L. Neustadter, and K. P. Whittingham, “Water-in-crude oil emulsion stability and emulsion destabilization by chemical demulsifiers,” Journal of Canadian Petroleum Technology, vol. 17, no. 2, pp. 100–108, 1978.
[20]
N. H. Abdurahman and W. K. Mahmood, “Stability of water-in-crude oil emulsions: effect of cocamide diethanolamine (DEA) and Span 83,” International Journal of Physical Sciences, vol. 7, no. 41, pp. 5585–5597, 2012.
[21]
J. D. McLean and P. K. Kilpatrick, “Effects of asphaltene solvency on stability of water-in-crude-oil emulsions,” Journal of Colloid and Interface Science, vol. 189, no. 2, pp. 242–253, 1997.
[22]
J. H. Norman, Non-Technical Guide to Petroleum, Geology, Exploration, Drilling and Production, Penswell Corporation, Tulsa, Okla, USA, 2nd edition, 2001.