全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dispersing of Petroleum Asphaltenes by Acidic Ionic Liquid and Determination by UV-Visible Spectroscopy

DOI: 10.1155/2013/203036

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nowadays, constructing a mechanism to prevent the aggregation petroleum asphaltenes by the use of new acidic ionic liquids has become of fundamental importance. In this research, 3-(2-carboxybenzoyl)-1-methyl-1H-imidazol-3-ium chloride ([CbMIM] [Cl]) and other ionic liquids such as [CbMIM]BF4, [HMIM]Cl, [BMIM]Br, and [HMIM]HSO4 were tested. It should be noted that during the experiment the presence of the acidic ionic liquid moiety enhanced interactions between asphaltenes and acidic ionic liquids and it greatly limited asphaltene aggregation. We considered parameters such as temperature, amount of dispersant, effect of water: toluene ratio, the stirring time and effects of other ionic liquids, and determination of concentration of petroleum asphaltenes after dispersing by acidic ionic liquid under various parameters using UV-Visible spectroscopy. 1. Introduction Asphaltene is defined as a component of the crude oil which is precipitated by adding low molecular weight solvents (n-alkanes) [1]. According to recent studies, asphaltenes are defined as solid soluble asphaltenes in aromatic solvents (e.g., benzene/toluene) and are also regarded as insoluble asphaltenes in paraffinic solvents (n-heptane/n-pentane/petroleum ether, etc.) [2]. Asphaltenes are petroleum hydrocarbons with extremely complex molecular structure containing sulfur (0.3–10.3%), oxygen (0.3–4.8%), nitrogen (0.6–3.3%), and metal elements, such as Fe, Ni, and V in a small amount [3–6]. One of the most important problems in oil industries is the precipitation of heavy components of crude oil such as asphaltenes. The precipitation of these compounds causes different problems like the blockage of crude oil extraction in transport pipes and pollution of ecosystems [7, 8]. The aromatic moiety, through π-π* and dipole interactions, was thought to be one of the dominant contributors to asphaltene self-association. Hence, proper characterization of the asphaltene molecular structure and its aromaticity is fundamental in understanding of the self-association phenomenon [9]. The efficiency of dispersants is dependent on their polarity and structure. Therefore, dispersants should have an affinity to asphaltenes and should either be absorbed on the surface of the asphaltene aggregation or become bond with the polar group of asphaltene molecules [10]. Recent studies show that the petroleum asphaltenes are strong hydrogen bond acceptors and weak hydrogen bond donors [11]. However, strong acids become effective asphaltene dispersants if their alkyl tails are long enough to provide the necessary

References

[1]  M. Nikookar, G. R. Pazuki, M. R. Omidkhah, and L. Sahranavard, “Modification of a thermodynamic model and an equation of state for accurate calculation of asphaltene precipitation phase behavior,” Fuel, vol. 87, no. 1, pp. 85–91, 2008.
[2]  A. K. Ghosh, “Spectrophotometric study of molecular complex formation of asphaltene with two isomeric chloranils,” Fuel, vol. 84, no. 2-3, pp. 153–157, 2005.
[3]  L. Buch, H. Groenzin, E. Buenrostro-Gonzalez, S. I. Andersen, C. Lira-Galeana, and O. C. Mullins, “Molecular size of asphaltene fractions obtained from residuum hydrotreatment,” Fuel, vol. 82, no. 9, pp. 1075–1084, 2003.
[4]  H. Groenzin and O. C. Mullins, “Molecular size and structure of asphaltenes from various sources,” Energy and Fuels, vol. 14, no. 3, pp. 677–684, 2000.
[5]  J. T. Miller, R. B. Fisher, P. Thiyagarajan, R. E. Winans, and J. E. Hunt, “Subfractionation and characterization of mayan asphaltene,” Energy and Fuels, vol. 12, no. 6, pp. 1290–1298, 1998.
[6]  T. Tavassoli, S. M. Mousavi, S. A. Shojaosadati, and H. Salehizadeh, “Asphaltene biodegradation using microorganisms isolated from oil samples,” Fuel, vol. 93, pp. 142–148, 2012.
[7]  E. Hong and P. Watkinson, “A study of asphaltene solubility and precipitation,” Fuel, vol. 83, no. 14-15, pp. 1881–1887, 2004.
[8]  T. J. Kaminski, H. S. Fogler, N. Wolf, P. Wattana, and A. Mairal, “Classification of asphaltenes via fractionation and the effect of heteroatom content on dissolution kinetics,” Energy and Fuels, vol. 14, no. 1, pp. 25–30, 2000.
[9]  Y. Bouhadda, P. Florian, D. Bendedouch, T. Fergoug, and D. Bormann, “Determination of Algerian Hassi-Messaoud asphaltene aromaticity with different solid-state NMR sequences,” Fuel, vol. 89, no. 2, pp. 522–526, 2010.
[10]  M. Boukherissa, F. Mutelet, A. Modarressi, A. Dicko, D. Dafri, and M. Rogalski, “Ionic liquids as dispersants of petroleum asphaltenes,” Energy and Fuels, vol. 23, no. 5, pp. 2557–2564, 2009.
[11]  F. Mutelet, G. Ekulu, R. Solimando, and M. Rogalski, “Solubility parameters of crude oils and asphaltenes,” Energy and Fuels, vol. 18, no. 3, pp. 667–673, 2004.
[12]  O. León, E. Rogel, A. Urbina, A. Andújar, and A. Lucas, “Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles,” Langmuir, vol. 15, no. 22, pp. 7653–7657, 1999.
[13]  Y. F. Hu and T. M. Guo, “Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils,” Langmuir, vol. 21, no. 18, pp. 8168–8174, 2005.
[14]  I. N. Evdokimov, N. Y. Eliseev, and B. R. Akhmetov, “Assembly of asphaltene molecular as studied by near-UV/visible spectroscopy aggregates, I. Structure of the absorbance spectrum,” Journal of Petroleum Science and Engineering, vol. 37, no. 3-4, pp. 135–143, 2003.
[15]  I. N. Evdokimov, N. Y. Eliseev, and B. R. Akhmetov, “Assembly of asphaltene molecular as studied by near-UV/visible spectroscopy aggregates, II. Concentration dependencies of absorptivities,” Journal of Petroleum Science and Engineering, vol. 37, no. 3-4, pp. 145–152, 2003.
[16]  I. N. Evdokimov, N. Y. Eliseev, and B. R. Akhmetov, “Initial stages of asphaltene aggregation in dilute crude oil solutions: studies of viscosity and NMR relaxation,” Fuel, vol. 82, no. 7, pp. 817–823, 2003.
[17]  E. Y. Sheu, “Petroleum asphaltene—properties, characterization, and issues,” Energy and Fuels, vol. 16, no. 1, pp. 74–82, 2002.
[18]  M. Idris and L. N. Okoro, “A review on the effects of asphaltene on petroleum processing,” European Chemical Bulletin, vol. 2, no. 6, pp. 393–396, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133