全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bayesian Estimation and Prediction for Flexible Weibull Model under Type-II Censoring Scheme

DOI: 10.1155/2013/146140

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have developed the Bayesian estimation procedure for flexible Weibull distribution under Type-II censoring scheme assuming Jeffrey's scale invariant (noninformative) and Gamma (informative) priors for the model parameters. The interval estimation for the model parameters has been performed through normal approximation, bootstrap, and highest posterior density (HPD) procedures. Further, we have also derived the predictive posteriors and the corresponding predictive survival functions for the future observations based on Type-II censored data from the flexible Weibull distribution. Since the predictive posteriors are not in the closed form, we proposed to use the Monte Carlo Markov chain (MCMC) methods to approximate the posteriors of interest. The performance of the Bayes estimators has also been compared with the classical estimators of the model parameters through the Monte Carlo simulation study. A real data set representing the time between failures of secondary reactor pumps has been analysed for illustration purpose. 1. Introduction In reliability/survival analysis, generally, life test experiments are performed to check the life expectancy of the manufactured product or items/units before products produced in the market. But in practice, the experimenters are not able to observe the failure times of all the units placed on a life test due to time and cost constraints or due to some other uncertain reasons. Data obtained from such experiments are called censored sample. Keeping time and cost constraints in mind, many types of censoring schemes have been discussed in the statistical literature named as Type-I censoring, Type-II censoring and progressive censoring schemes, and so forth. In this paper, Type-II censoring scheme is considered. In Type-II censoring scheme, the life test is terminated as soon as a prespecified number (say, ) of units have failed. Therefore, out of units put on test, only first failures will be observed. The data obtained from such a restrained life test will be referred to as a Type-II censored sample. Prediction of the lifetimes of future items based on censored data is very interesting and valuable topic for researchers, engineers and reliability practitioners. In predictive inference, In predictive Inference, we can infer about the lifetimes of the future items using observed data. The future prediction problem can be classified into two types: (1) one-sample prediction problem. (2) two-sample prediction problem. In one-sample prediction problem, the variable to be predicted comes from the same sequence of variables

References

[1]  I. R. Dunsmore, “The Bayesian predictive distribution in life testing models,” Technometrics, vol. 16, pp. 455–460, 1974.
[2]  E. K. AL-Hussaini, “Predicting observables from a general class of distributions,” Journal of Statistical Planning and Inference, vol. 79, no. 1, pp. 79–91, 1999.
[3]  E. K. Al-Hussaini, “On Bayes prediction of future median,” Communications in Statistics, vol. 30, no. 7, pp. 1395–1410, 2001.
[4]  B. Pradhan and D. Kundu, “Bayes estimation and prediction of the two-parameter gamma distribution,” Journal of Statistical Computation and Simulation, vol. 81, no. 9, pp. 1187–1198, 2011.
[5]  D. Kundu and M. Z. Raqab, “Bayesian inference and prediction of order statistics for a Type-II censored Weibull distribution,” Journal of Statistical Planning and Inference, vol. 142, no. 1, pp. 41–47, 2012.
[6]  D. Kundu and H. Howlader, “Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data,” Computational Statistics & Data Analysis, vol. 54, no. 6, pp. 1547–1558, 2010.
[7]  I. G. Evans and A. M. Nigm, “Bayesian prediction for two-parameter Weibull lifetime models,” Communications in Statistics, vol. 9, no. 6, pp. 649–658, 1980.
[8]  S. K. Singh, U. Singh, and V. K. Sharma, “Bayesian estimation and prediction for the generalized lindley distribution under assymetric loss function,” Hacettepe Journal of Mathematics and Statistics. In press.
[9]  S. K. Singh, U. Singh, and V. K. Sharma, “Bayesian prediction of future observations from inverse weibull distribution based on type-ii hybrid censored sample,” International Journal of Advanced Statistics and Probability, vol. 1, pp. 32–43, 2013.
[10]  M. Bebbington, C.-D. Lai, and R. Zitikis, “A flexible weibull extension,” Reliability Engineering and System Safety, vol. 92, no. 6, pp. 719–726, 2007.
[11]  A. F. M. Smith and G. O. Roberts, “Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods,” Journal of the Royal Statistical Society B, vol. 55, no. 1, pp. 3–23, 1993.
[12]  W. K. Hastings, “Monte carlo sampling methods using Markov chains and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.
[13]  S. P. Brooks, “Markov chain Monte Carlo method and its application,” Journal of the Royal Statistical Society D, vol. 47, no. 1, pp. 69–100, 1998.
[14]  B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy,” Statistical Science, vol. 1, no. 1, pp. 54–77, 1986.
[15]  M.-H. Chen and Q.-M. Shao, “Monte Carlo estimation of Bayesian credible and HPD intervals,” Journal of Computational and Graphical Statistics, vol. 8, no. 1, pp. 69–92, 1999.
[16]  H. A. David and H. N. Nagaraja, Order Statistics, Wiley Series in Probability and Statistics, Wiley, New York, NY, USA, 3rd edition, 2003.
[17]  J. O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer Series in Statistics, Springer, New York, NY, USA, 2nd edition, 1985.
[18]  R Development Core Team, “R: a language and environment for statistical computing,” Tech. Rep., R Foundation for Statistical Computing, Vienna, Austria, 2012, http://www.r-project.org/.
[19]  M. S. Suprawhardana, Prayoto, and Sangadji, “Total time on test plot analysis for machenical components of the rsg-gas reactor,” Atom Inones, vol. 25, no. 2, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133