全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exertion in Kangoo Jumps Aerobic: Evaluation and Interpretation Using Spectroscopic Technique Determinations

DOI: 10.1155/2013/602434

Full-Text   Cite this paper   Add to My Lib

Abstract:

Laser photoacoustic spectroscopy (LPAS) is growing quickly in its applications to real world problems—one of the problems is to prevent obesity—being a candidate technology for breath analysis applications. The ongoing paper is aiming to investigate the evaluation of oxidative stress in womens practicing Kangoo Jumps (KJ) aerobics. Because it is not possible to directly measure free radicals in the body, we approach that by measuring the by-products (breath ethylene) that result from free radical reactions. We found out that the mixture of exhaled breath in women's after the KJ exercises contains low concentration of ethylene compared to the exhaled breath of the women before the start of exercise program. This result can add valuable information to the contribution to reduce the generation of prooxidants during and after KJ aerobics. 1. Introduction There is no doubt that regular sporting activity has physiological benefits, but there is no evidence that there are benefits of extreme endurance sports. Indeed, there are indications that ultra-distance runners, for example, may suffer increased health risks due to high oxidative stress, which generates aggressive oxygen radicals and metabolites that can damage cells and cell components [1–3]. Several interesting concepts have emerged from these types of experimental studies [3–10]. Regular physical exercise enhances the antioxidant defense system and protects against exercise-induced free radical damage. This is an important finding, because it shows how smart the body is about adapting to the demands of exercise. These changes occur slowly over time and appear to parallel other adaptations to exercise. When exercising, the body is in an elevated aerobic metabolic state that increases the production of free radicals. That happens because the two primary fuel sources in the body, carbohydrates and fats, convert into energy through a process called oxidation. During oxidation, not all oxygen atoms bind with hydrogen, thus ending up as free radicals. Normally, the body wants to stay in an oxidative balance, with equal numbers of free radicals and antioxidants, which are free-radical inhibitors [10–12]. Running is one of the earliest and simplest types of aerobic activity. The combination of science and technology has led to the evolution of new forms of running. KJ boots are an example of a new innovative technology that is continuing the evolution of this age-old activity and is defined to be the newest way to getting rid of stress. These boots are designed to dissipate the impact stress and forces

References

[1]  B. Poljsak, I. Milisav, T. Lampe, and I. Ostan, “Reproductive benefit of oxidative damage: an oxidative stress “malevolence”?” Oxidative Medicine and Cellular Longevity, vol. 2011, Article ID 760978, 9 pages, 2011.
[2]  U. K. Senturk, F. Gunduz, O. Kuru et al., “Exercise-induced oxidative stress leads hemolysis in sedentary but not trained humans,” Journal of Applied Physiology, vol. 99, no. 4, pp. 1434–1441, 2005.
[3]  Austrian Science Fund FWF, http://www.fwf.ac.at/en/public_relations/press/pv200808-2en.html.
[4]  J. E. Tauton, N. S. Miller, E. C. Rhodes, B. D. Zumbo, and S. Fraser, “Kangoo Jumps-University of BC-Canada,” Max VO2 Improvements & Injury Prevention, vol. 1, 2002.
[5]  http://kangooclubsouthbay.com/12-weeks.html.
[6]  R. J. Bloomer and A. H. Goldfarb, “Anaerobic exercise and oxidative stress: a review,” Canadian Journal of Applied Physiology, vol. 29, no. 3, pp. 245–263, 2004.
[7]  A. M. Jones and H. Carter, “The effect of endurance training on parameters of aerobic fitness,” Sports Medicine, vol. 29, no. 6, pp. 373–386, 2000.
[8]  R. A. Robergs and S. O. Roberts, Exercise Physiology, Mosby, St. Louis, Mo, USA, 1997.
[9]  “American College of Sports Medicine Position Stand: the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults,” Medicine & Science in Sports & Exercise, vol. 22, pp. 265–274, 1990.
[10]  C. A. Macera, R. R. Pate, K. E. Powell, K. L. Jackson, J. S. Kendrick, and T. E. Craven, “Predicting lower-extremity injuries among habitual runners,” Archives of Internal Medicine, vol. 149, no. 11, pp. 2565–2568, 1989.
[11]  M. L. Urso and P. M. Clarkson, “Oxidative stress, exercise, and antioxidant supplementation,” Toxicology, vol. 189, no. 1-2, pp. 41–54, 2003.
[12]  A. Taylor and M. Johnson, Physiology of Exercise and Healthy Aging, Human Kinetics, 2008.
[13]  N. Miller, J. E. Taunton, S. Fraser, E. Rhodes, and B. Zumbo, “Kangoo Jumps: an innovative training device,” British Columbia Medical Journal, vol. 45, no. 9, pp. 444–448, 2003.
[14]  R. U. Newton, B. J. Humphries, and I. B. Ward, “Reducing ground impact forces during jogging: an evaluation of shoes with springs,” Unpublished data, 1995.
[15]  T. S. Keller, A. M. Weisberger, J. L. Ray, et al., “Relationship between vertical ground reaction force and speed during walking, slow jogging, and running,” Clinical Biomechanics, vol. 11, no. 5, pp. 253–259, 1996.
[16]  G. J. Handelman, “Current studies on oxidant stress in dialysis,” Blood Purification, vol. 21, no. 1, pp. 46–50, 2003.
[17]  G. Giubileo, “Laser based assessment of lipid peroxidation in humans,” in ROMOPTO '97: 5th Conference on Optics, vol. 3405 of Proceedings of SPIE, pp. 642–653, September 1998.
[18]  K. S. Stevenson, K. Radhakrishnan, C. S. Patterson et al., “Breath ethane peaks during a single haemodialysis session and is associated with time on dialysis,” Journal of Breath Research, vol. 2, no. 2, Article ID 026004, 8 pages, 2008.
[19]  O. Dale, H. Bergum, T. Lund, T. Nilsen, P. Aadahl, and R. Stenseth, “A validated method for rapid analysis of ethane in breath and its application in kinetic studies in human volunteers,” Free Radical Research, vol. 37, no. 8, pp. 815–821, 2003.
[20]  G. Giubileo, “Medical diagnostics by laser-based analysis of exhaled breath,” in ALT'01 International Conference on Advanced Laser Technologies, vol. 4762 of Proceedings of SPIE, 2002.
[21]  D. C. Dumitras, D. C. Dutu, C. Matei et al., “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Romanian Reports on Physics, vol. 60, no. 3, pp. 593–602, 2008.
[22]  D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Improvement of a laser photoacoustic instrument for trace gas detection,” UPB Scientific Bulletin, Series A, vol. 69, no. 3, pp. 45–56, 2007.
[23]  D. C. Dumitras, S. Banita, A. M. Bratu et al., “Ultrasensitive CO2 laser photoacoustic system,” Infrared Physics and Technology, vol. 53, no. 5, pp. 308–314, 2010.
[24]  C. Popa, A. M. Bratu, C. Matei, R. Cernat, A. Popescu, and D. C. Dumitras, “Qualitative and quantitative determination of human biomarkers by laser photoacoustic spectroscopy methods,” Laser Physics, vol. 21, no. 7, pp. 1336–1342, 2011.
[25]  D. C. Dumitras, D. C. Dutu, C. Matei et al., “Evaluation of ammonia absorption coefficients by photoacoustic spectroscopy for detection of ammonia levels in human breath,” Laser Physics, vol. 21, no. 4, pp. 796–800, 2011.
[26]  D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” Journal of Optoelectronics and Advanced Materials, vol. 9, no. 12, pp. 3655–3701, 2007.
[27]  F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, and C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Applied Physics B, vol. 50, no. 2, pp. 137–144, 1990.
[28]  A. M. Bratu, C. Popa, C. Matei, S. Banita, D. C. A. Dutu, and D. C. Dumitras, “Removal of interfering gases in breath biomarker measurements,” Journal of Optoelectronics and Advanced Materials, vol. 13, no. 8, pp. 1045–1050, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133