全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Raman Spectroscopic Analysis of H2O2-Stimulated Three-Dimensional Human Skin Models Containing Asian, Black, and Caucasian Melanocytes

DOI: 10.1155/2013/903450

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reactive oxygen species generated in dermal cells of human skin is related to skin disorders or diseases. In this study, Raman analysis effectively clarified the identities of three types of human skin models after the models were stimulated with hydrogen peroxide. With the Caucasian skin model, the major Raman bands underwent large intensity changes within 4-5 days of stimulation. With the Black skin model, the Raman bands remained almost unchanged. The changes in the Asian skin model were unique compared to those in the above two. Eumelanin and pheomelanin are probably the main compounds that differentiate dermal cells in terms of their sensitivity to hydrogen peroxide. 1. Introduction Human skin is sensitive to sunlight, especially to ultraviolet (UV) light, which generates reactive oxygen species (ROS) in dermal cells. This phenomenon is related to disorders or diseases such as stains, freckles, and cancers of the skin. Many researchers have sought to understand these disorders at the molecular level and are also interested in classifying them [1–3]. In clinical medicine, Raman spectroscopy attracts researchers as a microscopic, nondestructive, and nonlabeling research tool. Raman spectroscopy provides information about the compositions, structures, and interactions of molecules [4], and it has been used as a powerful analytical method in chemistry for 80 years. Its application to clinical medicine has been somewhat slower, beginning during the 1970s [5–7], when the development of a Raman microscope allowed effective spectral measurements of biological tissues [8–11]. Today, we can measure the Raman spectrum of a live cell (ca. 20?μm in width) with high spectral quality, distinguishing an area of 1?μm2 in the horizontal plane (ca. 30?s for the spectrum) [12, 13]. Moreover, the use of a flexible fiber is one of the most promising approaches for making noninvasive Raman measurements of living tissues, and several research groups have developed fiber optics suitable for Raman measurements [14–19]. In this study, three-dimensional (3D) human skin models were stimulated with hydrogen peroxide (H2O2) to provide time-dependent Raman spectra. As mentioned above, UV-visible light generates ROS in dermal cells. H2O2, one of typical ROS, was therefore used as a substitute for UV light to stimulate the skin models. The 3D human skin models consisted of keratinocytes, melanocytes, and a collagen-layered membrane, as shown in Figure 1(a), which are frequently used for skin irritation tests in dermatology. Three kinds of skin models, containing Caucasian, Asian,

References

[1]  A. Nijssen, K. Maquelin, L. F. Santos et al., “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” Journal of Biomedical Optics, vol. 12, no. 3, Article ID 034004, 2007.
[2]  M. Gniadecka, P. A. Philipsen, S. Sigurdsson et al., “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” Journal of Investigative Dermatology, vol. 122, no. 2, pp. 443–449, 2004.
[3]  P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophysical Journal, vol. 85, no. 1, pp. 572–580, 2003.
[4]  J. R. Ferraro, K. Nakamoto, and C. B. Brown, Introductory Raman Spectroscopy, Elsevier, Amsterdam, The Netherlands, 2nd edition, 2003.
[5]  N.-T. Yu, B. H. Jo, R. C. C. Chang, and J. D. Huber, “Single crystal Raman spectra of native insulin. Structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Archives of Biochemistry and Biophysics, vol. 160, no. 2, pp. 614–622, 1974.
[6]  N.-T. Yu and E. J. East, “Laser Raman spectroscopic studies of ocular lens and its isolated protein fractions,” Journal of Biological Chemistry, vol. 250, no. 6, pp. 2196–2202, 1975.
[7]  E. J. East, R. C. C. Chang, and Nai-Teng Yu, “Raman spectroscopic measurement of total sulfhydryl in intact lens as affected by aging and ultraviolet irradiation. Deuterium exchange as a probe for accessible sulfhydryl in living tissue,” Journal of Biological Chemistry, vol. 253, no. 5, pp. 1436–1441, 1978.
[8]  M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitatio,” Journal of Raman Spectroscopy, vol. 3, no. 1, pp. 33–43, 1975.
[9]  M. E. Andersen and R. Z. Muggll, “Microscopical techniques with the molecular optics laser examiner Raman microprobe,” Analytical Chemistry, vol. 53, no. 12, pp. 1772–1777, 1981.
[10]  H. Ishida and A. Ishitani, “Raman microprobe analysis of thin films formed on the surface of silver electrical contacts utilizing the surface-enhanced raman scattering effect,” Applied Spectroscopy, vol. 37, no. 5, pp. 450–455, 1983.
[11]  H. Ishida, R. Kamoto, S. Uchida et al., “Raman microprobe and fourier transform-infrared microsampling studies of the microstructure of gallstones,” Applied Spectroscopy, vol. 41, no. 3, pp. 407–412, 1987.
[12]  Y. S. Huang, T. Karashima, M. Yamamoto, and H. O. Hamaguchi, “Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy,” Biochemistry, vol. 44, no. 30, pp. 10009–10019, 2005.
[13]  R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by Raman spectral phenotyping,” Biophysical Journal, vol. 98, no. 8, pp. 1703–1711, 2010.
[14]  H. P. Buschman, E. T. Marple, M. L. Wach et al., “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Analytical Chemistry, vol. 72, no. 16, pp. 3771–3775, 2000.
[15]  A. S. Haka, Z. Volynskaya, J. A. Gardecki et al., “In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy,” Cancer Research, vol. 66, no. 6, pp. 3317–3322, 2006.
[16]  Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Optics Letters, vol. 30, no. 21, pp. 2942–2944, 2005.
[17]  T. Katagiri, Y. S. Yamamoto, Y. Ozaki, Y. Matsuura, and H. Sato, “High axial resolution raman probe made of a single hollow optical fiber,” Applied Spectroscopy, vol. 63, no. 1, pp. 103–107, 2009.
[18]  Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Applied Optics, vol. 44, no. 22, pp. 4722–4732, 2005.
[19]  Y. Hattori, Y. Komachi, T. Asakura et al., “In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope,” Applied Spectroscopy, vol. 61, no. 6, pp. 579–584, 2007.
[20]  Z. Huang, H. Lui, X. K. Chen, A. Alajlan, D. I. McLean, and H. Zeng, “Raman spectroscopy of in vivo cutaneous melanin,” Journal of Biomedical Optics, vol. 9, no. 6, pp. 1198–1205, 2004.
[21]  I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro,” Expert Review of Medical Devices, vol. 3, no. 2, pp. 215–234, 2006.
[22]  N. Agar and A. R. Young, “Melanogenesis: a photoprotective response to DNA damage?” Mutation Research, vol. 571, no. 1-2, pp. 121–132, 2005.
[23]  S. Takeuchi, W. Zhang, K. Wakamatsu et al., “Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death in murine skin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 42, pp. 15076–15081, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133