The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. 1. Introduction Amoeba is a general name that is used for protists that form a large and diverse assemblage of eukaryotes that are characterized by various types of pseudopodia [1, 2]. Some amoebae are pathogenic and even parasitic to human and other vertebrate hosts. The four amoebae that are dealt with in this paper have been classified under two Super Groups, Amoebozoa and Excavata, as follows: (a) Entamoeba, Acanthamoeba, and Balamuthia are classified under the Super Group Amoebozoa; (b) Naegleria fowleri is classified under Super Group Excavata [1, 2]. The genus Entamoeba includes several species, such as E. histolytica, which causes amoebiasis, an infection in the gut characterized by invasion of the intestinal mucosa that occasionally spreads to other organs, mainly the liver, and E. dispar and E. moshkovskii, which are morphologically similar to E. histolytica and have been recently recognized as separate species. Although E. dispar and E. moshkovskii have no apparent invasive potential, they exhibit some pathogenicity [3, 4]. Molecular phylogeny analysis places the genus Entamoeba on one of the lowermost branches of the eukaryotic tree, closest to Dictyostelium [5]. Although Entamoeba, originally thought to lack mitochondria, nuclear-encoded mitochondrial genes and a remnant organelle have now been identified. The
References
[1]
J. Pawlowski and F. Burki, “Untangling the phylogeny of amoeboid protists,” Journal of Eukaryotic Microbiology, vol. 56, no. 1, pp. 16–25, 2009.
[2]
A. J. Roger and L. A. Hug, “The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1470, pp. 1039–1054, 2006.
[3]
T. F. H. G. Jackson, “Entamoeba histolytica and Entamoeba dispar are distinct species; clinical, epidemiological and serological evidence,” International Journal for Parasitology, vol. 28, no. 1, pp. 181–186, 1998.
[4]
S. A. Tengku and M. Norhayati, “Public health and clinical importance of amoebiasis in Malaysia: a review,” Tropical Biomedicine, vol. 28, no. 2, pp. 194–222, 2011.
[5]
M. Romeralo, R. Escalante, and S. L. Baldauf, “Evolution and diversity of dictyostelid social amoebae,” Protist, vol. 163, no. 3, pp. 327–343, 2012.
[6]
H. Scholze and W. Schulte, “On the specificity of a cysteine proteinase from Entamoeba histolytica,” Biomedica Biochimica Acta, vol. 47, no. 2, pp. 115–123, 1988.
[7]
A. L. Luaces and A. J. Barrett, “Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica,” Biochemical Journal, vol. 250, no. 3, pp. 903–909, 1988.
[8]
R. Ocádiz, E. Orozco, E. Carrillo et al., “EhCP112 is an Entamoeba histolytica secreted cysteine protease that may be involved in the parasite-virulence,” Cellular Microbiology, vol. 7, no. 2, pp. 221–232, 2005.
[9]
A. Hellberg, N. Nowak, M. Leippe, E. Tannich, and I. Bruchhaus, “Recombinant expression and purification of an enzymatically active cysteine proteinase of the protozoan parasite Entamoeba histolytica,” Protein Expression and Purification, vol. 24, no. 1, pp. 131–137, 2002.
[10]
R. Thibeaux, A. Dufour, P. Roux, M. Bernier, A. C. Baglin, and P. Frileux, “Newly visualized fibrillar collagen scaffolds dictate Entamoeba histolytica invasion route in the human colon,” Cellular Microbiology, vol. 14, no. 5, pp. 609–621, 2012.
[11]
W. E. Keene, M. G. Petitt, S. Allen, and J. H. McKerrow, “The major neutral proteinase of Entamoeba histolytica,” Journal of Experimental Medicine, vol. 163, no. 3, pp. 536–549, 1986.
[12]
J. De Jesús Serrano, M. De La Garza, M. A. Moreno et al., “Entamoeba histolytica: electron-dense granule secretion, collagenase activity and virulence are altered in the cytoskeleton mutant BG-3,” Molecular Microbiology, vol. 11, no. 4, pp. 787–792, 1994.
[13]
W. Schulte and H. Scholze, “Action of the major protease from Entamoeba histolytica on proteins of the extracellular matrix,” Journal of Protozoology, vol. 36, no. 6, pp. 538–543, 1989.
[14]
C. He, G. P. Nora, E. L. Schneider et al., “A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amebiasis and a therapeutic target,” Journal of Biological Chemistry, vol. 285, no. 24, pp. 18516–18527, 2010.
[15]
J. De Jesús Serrano, M. De La Garza, M. Reyes, G. León, R. Tovar, and M. De Lourdes Mu?oz, “Entamoeba histolytica: proteinase secretion induced by collagen type I is dependent on cytoskeleton integrity,” Parasitology Research, vol. 82, no. 3, pp. 200–205, 1996.
[16]
B. L. Kelsall and J. I. Ravdin, “Degradation of human IgA by Entamoeba histolytica,” Journal of Infectious Diseases, vol. 168, no. 5, pp. 1319–1322, 1993.
[17]
S. G. Meléndez-López, S. Herdman, K. Hirata et al., “Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model,” Eukaryotic Cell, vol. 6, no. 7, pp. 1130–1136, 2007.
[18]
S. L. Reed, W. E. Keene, J. H. McKerrow, and I. Gigli, “Cleavage of C3 by a neutral cysteine proteinase of Entamoeba histolytica,” Journal of Immunology, vol. 143, no. 1, pp. 189–195, 1989.
[19]
S. L. Reed, J. A. Ember, D. S. Herdman, R. G. DiScipio, T. E. Hugli, and I. Gigli, “The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a,” Journal of Immunology, vol. 155, no. 1, pp. 266–274, 1995.
[20]
X. Que, S. H. Kim, M. Sajid et al., “A surface amebic cysteine proteinase inactivates interleukin-18,” Infection and Immunity, vol. 71, no. 3, pp. 1274–1280, 2003.
[21]
E. Li, W. G. Yang, T. Zhang, and S. L. Stanley, “Interaction of laminin with Entamoeba histolytica cysteine proteinases and its effect on amebic pathogenesis,” Infection and Immunity, vol. 63, no. 10, pp. 4150–4153, 1995.
[22]
Z. Zhang, L. Wang, K. B. Seydel et al., “Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis,” Molecular Microbiology, vol. 37, no. 3, pp. 542–548, 2000.
[23]
J. McLaughlin and G. Faubert, “Partial purification and some properties of a neutral sulfhydryl and an acid proteinase from Entamoeba histolytica,” Canadian Journal of Microbiology, vol. 23, no. 4, pp. 420–425, 1977.
[24]
R. Perez-Montfort, P. Ostoa-Saloma, L. Velazquez-Medina, I. Montfort, and I. Becker, “Catalytic classes of proteinases of Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 26, no. 1-2, pp. 87–97, 1987.
[25]
W. B. Lushbaugh, A. F. Hofbauer, and A. A. Kairalla, “Relationship of cytotoxins of axenically cultivated Entamoeba histolytica to virulence,” Gastroenterology, vol. 86, no. 6, pp. 1488–1495, 1984.
[26]
W. B. Lushbaugh, A. F. Hofbauer, and F. E. Pittman, “Entamoeba histolytica: purification of cathepsin B,” Experimental Parasitology, vol. 59, no. 3, pp. 328–336, 1985.
[27]
J. De Jesús Serrano-Luna, E. Negrete, M. Reyes, and M. De La Garza, “Entamoeba histolytica HM1:IMSS: hemoglobin-degrading neutral cysteine proteases,” Experimental Parasitology, vol. 89, no. 1, pp. 71–77, 1998.
[28]
M. Reyes-López, R. M. Bermúdez-Cruz, E. E. Avila, and M. De La Garza, “Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica,” Microbiology, vol. 157, no. 1, pp. 209–219, 2011.
[29]
N. León-Sicairos, M. Reyes-López, A. Canizalez-Román et al., “Human hololactoferrin: endocytosis and use as an iron source by the parasite Entamoeba histolytica,” Microbiology, vol. 151, no. 12, pp. 3859–3871, 2005.
[30]
F. López-Soto, A. González-Robles, L. Salazar-Villatoro et al., “Entamoeba histolytica uses ferritin as an iron source and internalises this protein by means of clathrin-coated vesicles,” International Journal for Parasitology, vol. 39, no. 4, pp. 417–426, 2009.
[31]
D. Moncada, K. Keller, S. Ankri, D. Mirelman, and K. Chadee, “Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation,” Gastroenterology, vol. 130, no. 3, pp. 721–730, 2006.
[32]
R. Perez-Tamayo, I. Becker, I. Montfort, P. Ostoa-Saloma, and R. Perez-Montfort, “Role of leukocytes and amebic proteinases in experimental rat testicular necrosis produced by Entamoeba histolytica,” Parasitology Research, vol. 77, no. 3, pp. 192–196, 1991.
[33]
R. Lopez-Revilla and M. Baez-Camargo, “Immediate autoproteolysis and new proteinases in Entamoeba invadens and Entamoeba moshkovskii trophozoites,” Archives of Medical Research, vol. 23, no. 2, pp. 95–97, 1992.
[34]
V. Kissoon-Singh, L. Mortimer, and K. Chadee, “Entamoeba histolytica cathepsin-like enzymes: interactions with the host gut,” Advances in Experimental Medicine and Biology, vol. 712, pp. 62–83, 2011.
[35]
I. Bruchhaus, T. Jacobs, M. Leippe, and E. Tannich, “Entamoeba histolytica and Entamoeba dispar: differences in numbers and expression of cysteine proteinase genes,” Molecular Microbiology, vol. 22, no. 2, pp. 255–263, 1996.
[36]
A. Makioka, M. Kumagai, S. Kobayashi, and T. Takeuchi, “Entamoeba invadens: cysteine protease inhibitors block excystation and metacystic development,” Experimental Parasitology, vol. 109, no. 1, pp. 27–32, 2005.
[37]
A. Makioka, M. Kumagai, S. Kobayashi, and T. Takeuchi, “Involvement of serine proteases in the excystation and metacystic development of Entamoeba invadens,” Parasitology Research, vol. 105, no. 4, pp. 977–987, 2009.
[38]
M. Sharma, K. Hirata, S. Herdman, and S. Reed, “Entamoeba invadens: characterization of cysteine proteinases,” Experimental Parasitology, vol. 84, no. 1, pp. 84–91, 1996.
[39]
Y. Riahi and S. Ankri, “Involvement of serine proteinases during encystation of Entamoeba invadens,” Archives of Medical Research, vol. 31, no. 4, pp. S187–S189, 2000.
[40]
H. Scholze and W. Schulte, “Purification and partial characterization of the major cysteine protease from Entamoeba invadens,” Biomedica Biochimica Acta, vol. 49, no. 6, pp. 455–463, 1990.
[41]
F. R. De Souza Carvalho, L. C. Carrijo-Carvalho, A. M. Chudzinski-Tavassi, A. S. Foronda, and D. de Freitas, “Serine-like proteolytic enzymes correlated with differential pathogenicity in patients with acute Acanthamoeba keratitis,” Clinical Microbiology and Infection, vol. 17, no. 4, pp. 603–609, 2011.
[42]
B. K. Na, J. C. Kim, and C. Y. Song, “Characterization and pathogenetic role of proteinase from Acanthamoeba castellanii,” Microbial Pathogenesis, vol. 30, no. 1, pp. 39–48, 2001.
[43]
M. Hurt, S. Neelam, J. Niederkorn, and H. Alizadeh, “Pathogenic Acanthamoeba spp. secrete a mannose-induced cytolytic protein that correlates with the ability to cause disease,” Infection and Immunity, vol. 71, no. 11, pp. 6243–6255, 2003.
[44]
M. Hurt, J. Niederkorn, and H. Alizadeh, “Effects of mannose on Acanthamoeba castellanii proliferation and cytolytic ability to corneal epithelial cells,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3424–3431, 2003.
[45]
J. Sissons, S. Alsam, G. Goldsworthy, M. Lightfoot, E. L. Jarroll, and N. A. Khan, “Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis,” BMC Microbiology, vol. 6, article 42, 2006.
[46]
H. K. Kim, Y. R. Ha, H. S. Yu, H. H. Kong, and D. I. Chung, “Purification and characterization of a 33 kDa serine protease from Acanthamoeba lugdunensis KA/E2 isolated from a Korean keratitis patient,” The Korean Journal of Parasitology, vol. 41, no. 4, pp. 189–196, 2003.
[47]
J. D. J. Serrano-Luna, I. Cervantes-Sandoval, J. Calderón, F. Navarro-García, V. Tsutsumi, and M. Shibayama, “Protease activities of Acanthamoeba polyphaga and Acanthamoeba castellanii,” Canadian Journal of Microbiology, vol. 52, no. 1, pp. 16–23, 2006.
[48]
K. Aldape, H. Huizinga, J. Bouvier, and J. McKerrow, “Naegleria fowleri: characterization of a secreted histolytic cysteine protease,” Experimental Parasitology, vol. 78, no. 2, pp. 230–241, 1994.
[49]
I. Cervantes-Sandoval, J. D. J. Serrano-Luna, E. García-Latorre, V. Tsutsumi, and M. Shibayama, “Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion,” Microbiology, vol. 154, no. 12, pp. 3895–3904, 2008.
[50]
J. Serrano-Luna, I. Cervantes-Sandoval, V. Tsutsumi, and M. Shibayama, “A biochemical comparison of proteases from pathogenic Naegleria fowleri and non-pathogenic Naegleria gruberi,” Journal of Eukaryotic Microbiology, vol. 54, no. 5, pp. 411–417, 2007.
[51]
A. Matin, M. Stins, K. S. Kim, and N. A. Khan, “Balamuthia mandrillaris exhibits metalloprotease activities,” FEMS Immunology and Medical Microbiology, vol. 47, no. 1, pp. 83–91, 2006.
[52]
G. S. Visvesvara, H. Moura, and F. L. Schuster, “Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea,” FEMS Immunology and Medical Microbiology, vol. 50, no. 1, pp. 1–26, 2007.
[53]
A. Martinez-Palomo, “The pathogenesis of amoebiasis,” Parasitology Today, vol. 3, no. 4, pp. 111–118, 1987.
[54]
C. Ximénez, “Epidemiology of amebiasis in Mexico: a molecular approach,” Archives of Medical Research, vol. 37, no. 2, pp. 263–265, 2006.
[55]
M. Espinosa-Cantellano and A. Martínez-Palomo, “Pathogenesis of intestinal amebiasis: from molecules to disease,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 318–331, 2000.
[56]
S. L. Stanley Jr., “Amoebiasis,” Lancet, vol. 361, no. 9362, pp. 1025–1034, 2003.
[57]
K. S. Ralston and W. A. Petri Jr., “Tissue destruction and invasion by Entamoeba histolytica,” Trends in Parasitology, vol. 27, no. 6, pp. 254–263, 2011.
[58]
K. Prathap and R. Gilman, “The histopathology of acute intestinal amebiasis. A rectal biopsy study,” American Journal of Pathology, vol. 60, no. 2, pp. 229–246, 1970.
[59]
R. Arroyo and E. Orozoco, “Localization and identification of an Entamoeba histolytica adhesin,” Molecular and Biochemical Parasitology, vol. 23, no. 2, pp. 151–158, 1987.
[60]
G. García-Rivera, M. A. Rodríguez, R. Ocádiz et al., “Entamoeba histolytica: a novel cysteine protease and an adhesin form the 112 kDa surface protein,” Molecular Microbiology, vol. 33, no. 3, pp. 556–568, 1999.
[61]
J. I. Ravdin, “Entamoeba histolytica: from adherence to enteropathy,” Journal of Infectious Diseases, vol. 159, no. 3, pp. 420–429, 1989.
[62]
W. A. Petri Jr. and J. I. Ravdin, “Cytopathogenicity of Entamoeba histolytica: the role of amebic adherence and contact-dependent cytolysis in pathogenesis,” European Journal of Epidemiology, vol. 3, no. 2, pp. 123–136, 1987.
[63]
J. L. Rosales-Encina, I. Meza, A. Lopex-De-Leon, P. Talamas-Rohana, and M. Rojkind, “Isolation of a 220-kilodalton protein with lectin properties from a virulent strain of Entamoeba histolytica,” Journal of Infectious Diseases, vol. 156, no. 5, pp. 790–797, 1987.
[64]
W. A. Petri Jr., R. Haque, and B. J. Mann, “The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica,” Annual Review of Microbiology, vol. 56, pp. 39–64, 2002.
[65]
J. J. McCoy, B. J. Mann, and W. A. Petri Jr., “Adherence and cytotoxicity of Entamoeba histolytica or how lectins let parasites stick around,” Infection and Immunity, vol. 62, no. 8, pp. 3045–3050, 1994.
[66]
M. Leippe and H. J. Müller-Eberhard, “The pore-forming peptide of Entamoeba histolytica, the protozoan parasite causing human amoebiasis,” Toxicology, vol. 87, no. 1–3, pp. 5–18, 1994.
[67]
J. I. Ravdin, F. Moreau, J. A. Sullivan, W. A. Petri Jr., and G. L. Mandell, “Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica,” Infection and Immunity, vol. 56, no. 6, pp. 1505–1512, 1988.
[68]
M. Leippe, S. Ebel, O. L. Schoenberger, R. D. Horstmann, and H. J. Muller-Eberhard, “Pore-forming peptide of pathogenic Entamoeba histolytica,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 17, pp. 7659–7663, 1991.
[69]
S. A. Long-Krug, K. J. Fischer, R. M. Hysmith, and J. I. Ravdin, “Phospholipase A enzymes of Entamoeba histolytica: description and subcellular localization,” Journal of Infectious Diseases, vol. 152, no. 3, pp. 536–541, 1985.
[70]
M. de la Torre, R. de la Hoz-Couturier, L. Landa, and B. Sepulveda, “Cultivos axenicos de Entamoeba histolytica,” Archivos de Investigación Médica, vol. 2, supplement 1, pp. 165–172, 1971.
[71]
S. Ankri, T. Stolarsky, R. Bracha, F. Padilla-Vaca, and D. Mirelman, “Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters,” Infection and Immunity, vol. 67, no. 1, pp. 421–422, 1999.
[72]
R. Bracha, Y. Nuchamowitz, M. Anbar, and D. Mirelman, “Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica,” PLoS Pathogens, vol. 2, no. 5, article e48, 2006.
[73]
I. Bruchhaus, B. J. Loftus, N. Hall, and E. Tannich, “The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation,” Eukaryotic Cell, vol. 2, no. 3, pp. 501–509, 2003.
[74]
J. H. McKerrow, E. Sun, P. J. Rosenthal, and J. Bouvier, “The proteases and pathogenicity of parasitic protozoa,” Annual Review of Microbiology, vol. 47, pp. 821–853, 1993.
[75]
X. Que, L. S. Brinen, P. Perkins et al., “Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 119, no. 1, pp. 23–32, 2002.
[76]
A. E. Eakin, J. Bouvier, J. A. Sakanari, C. S. Craik, and J. H. McKerrow, “Amplification and sequencing of genomic DNA fragments encoding cysteine proteases from protozoan parasites,” Molecular and Biochemical Parasitology, vol. 39, no. 1, pp. 1–8, 1990.
[77]
S. Reed, J. Bouvier, A. S. Pollack et al., “Cloning of a virulence factor of Entamoeba histolytica. Pathogenic strains possess a unique cysteine proteinase gene,” Journal of Clinical Investigation, vol. 91, no. 4, pp. 1532–1540, 1993.
[78]
M. Tillack, L. Biller, H. Irmer et al., “The Entamoeba histolytica genome: primary structure and expression of proteolytic enzymes,” BMC Genomics, vol. 8, article 170, 2007.
[79]
C. A. Gilchrist, E. Houpt, N. Trapaidze et al., “Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome,” Molecular and Biochemical Parasitology, vol. 147, no. 2, pp. 163–176, 2006.
[80]
H. Scholze and E. Werries, “A weakly acidic protease has a powerful proteolytic activity in Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 11, pp. 293–300, 1984.
[81]
H. Scholze, J. Otte, and E. Werries, “Cysteine proteinase of Entamoeba histolytica—II. Identification of the major split position in bovine insulin B-chain,” Molecular and Biochemical Parasitology, vol. 18, no. 1, pp. 113–121, 1986.
[82]
H. Scholze and E. Werries, “Cysteine proteinase of Entamoeba histolytica—I. Partial purification and action on different enzymes,” Molecular and Biochemical Parasitology, vol. 18, no. 1, pp. 103–112, 1986.
[83]
E. Tannich, H. Scholze, R. Nickel, and R. D. Horstmann, “Homologous cysteine proteinases of pathogenic and nonpathogenic Entamoeba histolytica: differences in structure and expression,” Journal of Biological Chemistry, vol. 266, no. 8, pp. 4798–4803, 1991.
[84]
D. Mirelman, Y. Nuchamowitz, B. B?hm-Gloning, and B. Walderich, “A homologue of the cysteine proteinase gene (ACP1 or Eh-CPp3) of pathogenic Entamoeba histolytica is present in non-pathogenic E. dispar strains,” Molecular and Biochemical Parasitology, vol. 78, no. 1-2, pp. 47–54, 1996.
[85]
K. K. Hirata, X. Que, S. G. Melendez-Lopez et al., “A phagocytosis mutant of Entamoeba histolytica is less virulent due to deficient proteinase expression and release,” Experimental Parasitology, vol. 115, no. 2, pp. 192–199, 2007.
[86]
P. H. Davis, J. Schulze, and S. L. Stanley, “Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin,” Molecular and Biochemical Parasitology, vol. 151, no. 1, pp. 118–128, 2007.
[87]
T. Jacobs, I. Bruchhaus, T. Dandekar, E. Tannich, and M. Leippe, “Isolation and molecular characterization of a surface-bound proteinase of Entamoeba histolytica,” Molecular Microbiology, vol. 27, no. 2, pp. 269–276, 1998.
[88]
E. M. Duncan, T. L. Muratore-Schroeder, R. G. Cook et al., “Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation,” Cell, vol. 135, no. 2, pp. 284–294, 2008.
[89]
B. Goulet, A. Baruch, N. S. Moon et al., “A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor,” Molecular Cell, vol. 14, no. 2, pp. 207–219, 2004.
[90]
G. Maubach, M. C. C. Lim, and L. Zhuo, “Nuclear cathepsin F regulates activation markers in rat hepatic stellate cells,” Molecular Biology of the Cell, vol. 19, no. 10, pp. 4238–4248, 2008.
[91]
S. L. Reed, W. E. Keene, and J. H. McKerrow, “Thiol proteinase expression and pathogenicity of Entamoeba histolytica,” Journal of Clinical Microbiology, vol. 27, no. 12, pp. 2772–2777, 1989.
[92]
U. Willhoeft, L. Hamann, and E. Tannich, “A DNA sequence corresponding to the gene encoding cysteine proteinase 5 in Entamoeba histolytica is present and positionally conserved but highly degenerated in Entamoeba dispar,” Infection and Immunity, vol. 67, no. 11, pp. 5925–5929, 1999.
[93]
S. Ankri, T. Stolarsky, and D. Mirelman, “Antisense inhibition of expression of cysteine proteinases does not affect Entamoeba histolytica cytopathic or haemolytic activity but inhibits phagocytosis,” Molecular Microbiology, vol. 28, no. 4, pp. 777–785, 1998.
[94]
M. A. R. Freitas, H. C. Fernandes, V. C. Calixto et al., “Entamoeba histolytica: cysteine proteinase activity and virulence. Focus on cysteine proteinase 5 expression levels,” Experimental Parasitology, vol. 122, no. 4, pp. 306–309, 2009.
[95]
L. I. Quintas-Granados, E. Orozco, L. G. Brieba, R. Arroyo, and J. Ortega-López, “Purification, refolding and autoactivation of the recombinant cysteine proteinase EhCP112 from Entamoeba histolytica,” Protein Expression and Purification, vol. 63, no. 1, pp. 26–32, 2009.
[96]
S. Carpeniseanu, K. Hirata, X. Que, E. Orozco, and S. L. Reed, “L6: a proteinase- and phagocytosis-deficient mutant of Entamoeba histolytica,” Archives of Medical Research, vol. 31, no. 4, pp. S237–S238, 2000.
[97]
X. Madriz, M. B. Martínez, M. A. Rodríguez et al., “Expression in fibroblasts and in live animals of Entamoeba histolytica polypeptides EhCP112 and EhADH112,” Microbiology, vol. 150, no. 5, pp. 1251–1260, 2004.
[98]
C. Martínez-López, E. Orozco, T. Sánchez, R. M. García-Pérez, F. Hernández-Hernández, and M. A. Rodríguez, “The EhADH112 recombinant polypeptide inhibits cell destruction and liver abscess formation by Entamoeba histolytica trophozoites,” Cellular Microbiology, vol. 6, no. 4, pp. 367–376, 2004.
[99]
M. A. Rodriguez, F. Hernandez, L. Santos, A. Valdez, and E. Orozco, “Entamoeba histolytica: molecules involved in the target cell-parasite relationship,” Molecular and Biochemical Parasitology, vol. 37, no. 1, pp. 87–100, 1989.
[100]
A. Brittingham, C. J. Morrison, W. R. McMaster, B. S. McGwire, K. P. Chang, and D. M. Mosser, “Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis,” Journal of Immunology, vol. 155, no. 6, pp. 3102–3111, 1995.
[101]
D. M. Mosser and A. Brittingham, “Leishmania, macrophages and complement: a tale of subversion and exploitation,” Parasitology, vol. 115, supplement, pp. S9–S23, 1997.
[102]
W. A. Petri Jr., R. D. Smith, P. H. Schlesinger, C. F. Murphy, and J. I. Ravdin, “Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica,” Journal of Clinical Investigation, vol. 80, no. 5, pp. 1238–1244, 1987.
[103]
S. L. Stanley, K. Tian, J. P. Koester, and E. Li, “The serine-rich Entamoeba histolytica protein is a phosphorylated membrane protein containing O-linked terminal N-acetylglucosamine residues,” Journal of Biological Chemistry, vol. 270, no. 8, pp. 4121–4126, 1995.
[104]
J. E. Teixeira and C. D. Huston, “Participation of the serine-rich Entamoeba histolytica protein in amebic phagocytosis of apoptotic host cells,” Infection and Immunity, vol. 76, no. 3, pp. 959–966, 2008.
[105]
W. E. Keene, M. E. Hidalgo, E. Orozco, and J. H. McKerrow, “Entamoeba histolytica: correlation of the cytopathic effect of virulent trophozoites with secretion of a cysteine proteinase,” Experimental Parasitology, vol. 71, no. 2, pp. 199–206, 1990.
[106]
E. Bier, L. Y. Jan, and Y. N. Jan, “rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster,” Genes and Development, vol. 4, no. 2, pp. 190–203, 1990.
[107]
U. Mayer and C. Nüsslein-Volhard, “A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo,” Genes & Development, vol. 2, no. 11, pp. 1496–1511, 1988.
[108]
J. M. Santos, A. Graindorge, and D. Soldati-Favre, “New insights into parasite rhomboid proteases,” Molecular and Biochemical Parasitology, vol. 182, no. 1-2, pp. 27–36, 2012.
[109]
S. Urban and M. Freeman, “Substrate specificity of Rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain,” Molecular Cell, vol. 11, no. 6, pp. 1425–1434, 2003.
[110]
L. A. Baxt, R. P. Baker, U. Singh, and S. Urban, “An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion,” Genes and Development, vol. 22, no. 12, pp. 1636–1646, 2008.
[111]
L. A. Baxt, E. Rastew, R. Bracha, D. Mirelman, and U. Singh, “Downregulation of an Entamoeba histolytica rhomboid protease reveals roles in regulating parasite adhesion and phagocytosis,” Eukaryotic Cell, vol. 9, no. 8, pp. 1283–1293, 2010.
[112]
K. Karakasis, D. Taylor, and K. Ko, “Uncovering a link between a plastid translocon component and rhomboid proteases using yeast mitochondria-based assays,” Plant and Cell Physiology, vol. 48, no. 4, pp. 655–661, 2007.
[113]
P. C. Brooks, S. Str?mblad, L. C. Sanders et al., “Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3,” Cell, vol. 85, no. 5, pp. 683–693, 1996.
[114]
A. M. Lechner, I. Assfalg-Machleidt, S. Zahler et al., “RGD-dependent binding of procathepsin X to integrin α vβ3 mediates cell-adhesive properties,” Journal of Biological Chemistry, vol. 281, no. 51, pp. 39588–39597, 2006.
[115]
A. Mondino and F. Blasi, “uPA and uPAR in fibrinolysis, immunity and pathology,” Trends in Immunology, vol. 25, no. 8, pp. 450–455, 2004.
[116]
M. E. Papaconstantinou, C. J. Carrell, A. O. Pineda et al., “Thrombin functions through its RGD sequence in a non-canonical conformation,” Journal of Biological Chemistry, vol. 280, no. 33, pp. 29393–29396, 2005.
[117]
Y. Hou, L. Mortimer, and K. Chadee, “Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFκB-mediated pro-inflammatory responses,” Journal of Biological Chemistry, vol. 285, no. 46, pp. 35497–35504, 2010.
[118]
A. F. Horwitz, “Integrins and health,” Scientific American, vol. 276, no. 5, pp. 68–75, 1997.
[119]
L. Mortimer and K. Chadee, “The immunopathogenesis of Entamoeba histolytica,” Experimental Parasitology, vol. 126, no. 3, pp. 366–380, 2010.
[120]
A. Belley, K. Keller, M. G?ettke, and K. Chadee, “Intestinal mucins in colonization and host defense against pathogens,” American Journal of Tropical Medicine and Hygiene, vol. 60, no. 4, pp. 10–15, 1999.
[121]
N. Asker, M. A. B. Axelsson, S. O. Olofsson, and G. C. Hansson, “Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus,” Journal of Biological Chemistry, vol. 273, no. 30, pp. 18857–18863, 1998.
[122]
A. Herrmann, J. R. Davies, G. Lindell et al., “Studies on the 'insoluble' glycoprotein complex from human colon: identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage,” Journal of Biological Chemistry, vol. 274, no. 22, pp. 15828–15836, 1999.
[123]
D. Bansal, P. Ave, S. Kerneis et al., “An ex vivo human intestinal model to study Entamoeba histolytica pathogenesis,” PLoS Neglected Tropical Diseases, vol. 3, no. 11, article e551, 2009.
[124]
D. Moncada, K. Keller, and K. Chadee, “Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function,” Infection and Immunity, vol. 71, no. 2, pp. 838–844, 2003.
[125]
M. E. Lidell, D. M. Moncada, K. Chadee, and G. C. Hansson, “Entamoeba histolytica cysteine protease cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9298–9303, 2006.
[126]
D. Moncada, K. Keller, and K. Chadee, “Entamoeba histolytica-secreted products degrade colonic mucin oligosaccharides,” Infection and Immunity, vol. 73, no. 6, pp. 3790–3793, 2005.
[127]
A. Debnath, J. S. Tashker, M. Sajid, and J. H. McKerrow, “Transcriptional and secretory responses of Entamoeba histolytica to mucins, epithelial cells and bacteria,” International Journal for Parasitology, vol. 37, no. 8-9, pp. 897–906, 2007.
[128]
A. Leroy, T. Lauwaet, G. De Bruyne, M. Cornelissen, and M. Mareel, “Entamoeba histolytica disturbs the tight junction complex in human enteric T84 cell layers,” FASEB Journal, vol. 14, no. 9, pp. 1139–1146, 2000.
[129]
A. Leroy, T. Lauwaet, M. J. Oliveira et al., “Disturbance of tight junctions by Entamoeba histolytica: resistant vertebrate cell types and incompetent trophozoites,” Archives of Medical Research, vol. 31, no. 4, pp. S218–S220, 2000.
[130]
T. Lauwaet, M. J. Oliveira, B. Callewaert et al., “Proteolysis of enteric cell villin by Entamoeba histolytica cysteine proteinases,” Journal of Biological Chemistry, vol. 278, no. 25, pp. 22650–22656, 2003.
[131]
T. Lauwaet, M. J. Oliveira, B. Callewaert, G. De Bruyne, M. Mareel, and A. Leroy, “Proteinase inhibitors TPCK and TLCK prevent Entamoeba histolytica induced disturbance of tight junctions and microvilli in enteric cell layers in vitro,” International Journal for Parasitology, vol. 34, no. 7, pp. 785–794, 2004.
[132]
C. Gitler, E. Calef, and I. Rosenberg, “Cytopathogenicity of Entamoeba histolytica,” Philosophical Transactions of the Royal Society B, vol. 307, no. 1131, pp. 73–85, 1984.
[133]
X. Que and S. L. Reed, “Cysteine proteinases and the pathogenesis of amebiasis,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 196–206, 2000.
[134]
S. Spinella, E. Levavasseur, F. Petek, and M. C. Rigothier, “Purification and biochemical characterization of a novel cysteine protease of Entamoeba histolytica,” European Journal of Biochemistry, vol. 266, no. 1, pp. 170–180, 1999.
[135]
S. L. Reed, J. G. Curd, and I. Gigli, “Activation of complement by pathogenic and nonpathogenic Entamoeba histolytica,” Journal of Immunology, vol. 136, no. 6, pp. 2265–2270, 1986.
[136]
M. D. L. Munoz, J. Calderon, and M. Rojkind, “The collagenase of Entamoeba histolytica,” Journal of Experimental Medicine, vol. 155, no. 1, pp. 42–51, 1982.
[137]
M. De Lourdes Munoz, E. Lamoyi, G. Leon et al., “Antigens in electron-dense granules from Entamoeba histolytica as possible markers for pathogenicity,” Journal of Clinical Microbiology, vol. 28, no. 11, pp. 2418–2424, 1990.
[138]
A. Debnath, M. A. Akbar, A. Mazumder, S. Kumar, and P. Das, “Entamoeba histolytica: characterization of human collagen type I and Ca2+ activated differentially expressed genes,” Experimental Parasitology, vol. 110, no. 3, pp. 214–219, 2005.
[139]
H. Gadasi and E. Kessler, “Correlation of virulence and collagenolytic activity in Entamoeba histolytica,” Infection and Immunity, vol. 39, no. 2, pp. 528–531, 1983.
[140]
M. A. Magos, M. De La Torre, and M. I. Munoz, “Collagenase activity in clinical isolates of Entamoeba histolytica maintained in xenic cultures,” Archives of Medical Research, vol. 23, no. 2, pp. 115–118, 1992.
[141]
M. De Lourdes Munoz, M. Rojkind, and J. Calderon, “Entamoeba histolytica: collagenolytic activity and virulence,” Journal of Protozoology, vol. 31, no. 3, pp. 468–470, 1984.
[142]
V. Tsutsumi, A. Ramirez-Rosales, H. Lanz-Mendoza et al., “Entamoeba histolytica: erythrophagocytosis, collagenolysis, and liver abscess production as virulence markers,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 86, no. 2, pp. 170–172, 1992.
[143]
B. Chavez-Munguia, G. Castanon, V. Hernandez-Ramirez, M. Gonzalez-Lazaro, P. Talamas-Rohana, and A. Martinez-Palomo, “Entamoeba histolytica electrondense granules secretion in vitro and in vivo: ultrastructural study,” Microscopy Research and Technique, vol. 75, no. 2, pp. 189–196, 2012.
[144]
P. Talamas-Rohana and I. Meza, “Interaction between pathogenic amebas and fibronectin: substrate degradation and changes in cytoskeleton organization,” Journal of Cell Biology, vol. 106, no. 5, pp. 1787–1794, 1988.
[145]
I. Meza, “Extracellular matrix-induced signaling in Entamoeba histolytica: its role in invasiveness,” Parasitology Today, vol. 16, no. 1, pp. 23–28, 2000.
[146]
J. Vazquez-Prado and I. Meza, “Fibronectin 'receptor' in Entamoeba histolytica: purification and association with the cytoskeleton,” Archives of Medical Research, vol. 23, no. 2, pp. 125–128, 1992.
[147]
E. Franco, J. Vazquez-Prado, and I. Meza, “Fibronectin-derived fragments as inducers of adhesion and chemotaxis of Entamoeba histolytica trophozoites,” Journal of Infectious Diseases, vol. 176, no. 6, pp. 1597–1602, 1997.
[148]
S. L. Stanley Jr., T. Zhang, D. Rubin, and E. Li, “Role of the Entamoeba histolytica cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice,” Infection and Immunity, vol. 63, no. 4, pp. 1587–1590, 1995.
[149]
M. Tillack, N. Nowak, H. Lotter et al., “Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCP5 for the pathogenicity of Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 149, no. 1, pp. 58–64, 2006.
[150]
A. Hellberg, R. Nickel, H. Lotter, E. Tannich, and I. Bruchhaus, “Overexpression of cysteine proteinase 2 in Entamoeba histolytica or Entamoeba dispar increases amoeba-induced monolayer destruction in vitro but does not augment amoebic liver abscess formation in gerbils,” Cellular Microbiology, vol. 3, no. 1, pp. 13–20, 2001.
[151]
H. Irmer, M. Tillack, L. Biller et al., “Major cysteine peptidases of Entamoeba histolytica are required for aggregation and digestion of erythrocytes but are dispensable for phagocytosis and cytopathogenicity,” Molecular Microbiology, vol. 72, no. 3, pp. 658–667, 2009.
[152]
K. McGowan, C. F. Deneke, G. M. Thorne, and S. L. Gorbach, “Entamoeba histolytica cytotoxin: purification, characterization, strain virulence, and protease activity,” Journal of Infectious Diseases, vol. 146, no. 5, pp. 616–625, 1982.
[153]
D. M. Faust, J. M. Markiewicz, A. Danckaert, G. Soubigou, and N. Guillen, “Human liver sinusoidal endothelial cells respond to interaction with Entamoeba histolytica by changes in morphology, integrin signalling and cell death,” Cellular Microbiology, vol. 13, no. 7, pp. 1091–1106, 2011.
[154]
S. Kumar, R. Banerjee, N. Nandi, A. H. Sardar, and P. Das, “Anoikis potential of Entameba histolytica secretory cysteine proteases: evidence of contact independent host cell death,” Microbial Pathogenesis, vol. 52, no. 1, pp. 69–76, 2012.
[155]
J. M. Woof and M. A. Ken, “The function of immunoglobulin A in immunity,” Journal of Pathology, vol. 208, no. 2, pp. 270–282, 2006.
[156]
R. M. Garcia-Nieto, R. Rico-Mata, S. Arias-Negrete, and E. E. Avila, “Degradation of human secretory IgA1 and IgA2 by Entamoeba histolytica surface-associated proteolytic activity,” Parasitology International, vol. 57, no. 4, pp. 417–423, 2008.
[157]
J. C. Carrero, C. Cervantes-Rebolledo, H. Aguilar-Díaz, M. Y. Díaz-Gallardo, J. P. Laclette, and J. Morales-Montor, “The role of the secretory immune response in the infection by Entamoeba histolytica,” Parasite Immunology, vol. 29, no. 7, pp. 331–338, 2007.
[158]
B. L. Kelsall, T. G. F. H. Jackson, V. Gathiram et al., “Secretory immunoglobulin A antibodies to the galactose-inhibitable adherence protein in the saliva of patients with amebic liver disease,” American Journal of Tropical Medicine and Hygiene, vol. 51, no. 4, pp. 454–459, 1994.
[159]
J. C. Carrero, M. Y. Diaz, M. Viveros, B. Espinoza, E. Acosta, and L. Ortiz-Ortiz, “Human secretory immunoglobulin A anti-Entamoeba histolytica antibodies inhibit adherence of amebae to MDCK cells,” Infection and Immunity, vol. 62, no. 2, pp. 764–767, 1994.
[160]
G. G. Guerrero-Manríquez, F. Sánchez-Ibarra, and E. E. Avila, “Inhibition of Entamoeba histolytica proteolytic activity by human salivary IgA antibodies,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 106, no. 11, pp. 1088–1094, 1998.
[161]
N. León-Sicairos, F. López-Soto, M. Reyes-López, D. Godínez-Vargas, C. Ordaz-Pichardo, and M. De La Garza, “Amoebicidal activity of milk, apo-lactoferrin, slgA and lysozyme,” Clinical Medicine and Research, vol. 4, no. 2, pp. 106–113, 2006.
[162]
R. Haque, D. Mondal, P. Duggal et al., “Entamoeba histolytica infection in children and protection from subsequent amebiasis,” Infection and Immunity, vol. 74, no. 2, pp. 904–909, 2006.
[163]
M. D. Abd Alla, R. Wolf, G. L. White, S. D. Kosanke, D. Cary, and J. J. Verweij, “Efficacy of a Gal-lectin subunit vaccine against experimental Entamoeba histolytica infection and colitis in baboons (Papio sp.),” Vaccine, vol. 30, no. 20, pp. 3068–3075, 2012.
[164]
T. F. H. G. Jackson and V. Gathiram, “Seroepidemiological study of antibody responses to the zymodemes of Entamoeba histolytica,” Lancet, vol. 1, no. 8431, pp. 716–719, 1985.
[165]
J. C. Carrero, A. Contreras-Rojas, B. Sánchez-Hernández et al., “Protection against murine intestinal amoebiasis induced by oral immunization with the 29kDa antigen of Entamoeba histolytica and cholera toxin,” Experimental Parasitology, vol. 126, no. 3, pp. 359–365, 2010.
[166]
D. M. Meneses-Ruiz, J. P. Laclette, H. Aguilar-Diaz, J. Hernandez-Ruiz, A. Luz-Madrigal, and A. Sampieri, “Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster,” International Journal of Biological Sciences, vol. 7, no. 9, pp. 1345–1356, 2011.
[167]
V. Q. Tran, D. S. Herdman, B. E. Torian, and S. L. Reed, “The neutral cysteine proteinase of Entamoeba histolytica degrades IgG and prevents its binding,” Journal of Infectious Diseases, vol. 177, no. 2, pp. 508–511, 1998.
[168]
D. Ricklin, G. Hajishengallis, K. Yang, and J. D. Lambris, “Complement: a key system for immune surveillance and homeostasis,” Nature Immunology, vol. 11, no. 9, pp. 785–797, 2010.
[169]
S. L. Reed, P. G. Sargeaunt, and A. I. Braude, “Resistance to lysis by human serum of pathogenic Entamoeba histolytica,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 77, no. 2, pp. 248–253, 1983.
[170]
R. Capin, N. R. Capin, M. Carmona, and L. Ortíz-Ortíz, “Effect of complement depletion on the induction of amebic liver abscess in the hamster,” Archivos de Investigacion Medica, vol. 11, no. 1, pp. 173–180, 1980.
[171]
S. L. Reed and I. Gigli, “Lysis of complement-sensitive Entamoeba histolytica by activated terminal complement components. Initiation of complement activation by an extracellular neutral cysteine proteinase,” Journal of Clinical Investigation, vol. 86, no. 6, pp. 1815–1822, 1990.
[172]
A. Olivos-Garcia, E. Saavedra, E. Ramos-Martinez, M. Nequiz, and R. Perez-Tamayo, “Molecular nature of virulence in Entamoeba histolytica,” Infection, Genetics and Evolution, vol. 9, no. 6, pp. 1033–1037, 2009.
[173]
Q. Peng, K. Li, S. H. Sacks, and W. Zhou, “The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses,” Inflammation and Allergy, vol. 8, no. 3, pp. 236–246, 2009.
[174]
K. B. Seydel, E. Li, P. E. Swanson, and S. L. Stanley, “Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis,” Infection and Immunity, vol. 65, no. 5, pp. 1631–1639, 1997.
[175]
R. Bracha, Y. Nuchamowitz, M. Leippe, and D. Mirelman, “Antisense inhibition of amoebapore expression in Entamoeba histolytica causes a decrease in amoebic virulence,” Molecular Microbiology, vol. 34, no. 3, pp. 463–472, 1999.
[176]
M. Leippe, “Amoebapores,” Parasitology Today, vol. 13, no. 5, pp. 178–183, 1997.
[177]
C. A. Dinarello, “Interleukin-18,” Methods, vol. 19, no. 1, pp. 121–132, 1999.
[178]
R. Séguin, B. J. Mann, K. Keller, and K. Chadee, “The tumor necrosis factor alpha-stimulating region of galactose- inhibitable lectin of Entamoeba histolytica activates gamma interferon- primed macrophages for amebicidal activity mediated by nitric oxide,” Infection and Immunity, vol. 65, no. 7, pp. 2522–2527, 1997.
[179]
R. L. Jurado, “Iron, infections, and anemia of inflammation,” Clinical Infectious Diseases, vol. 25, no. 4, pp. 888–895, 1997.
[180]
B. R. Otto, A. M. J. J. Verweij-Van Vught, and D. M. MacLaren, “Transferrins and heme-compounds as iron sources for pathogenic bacteria,” Critical Reviews in Microbiology, vol. 18, no. 3, pp. 217–233, 1992.
[181]
E. D. Weinberg, “Infection and iron metabolism,” American Journal of Clinical Nutrition, vol. 30, no. 9, pp. 1485–1490, 1977.
[182]
E. D. Weinberg, “Iron and infection,” Microbiological Reviews, vol. 42, no. 1, pp. 45–66, 1978.
[183]
E. D. Weinberg and J. Miklossy, “Iron withholding: a defense against disease,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 451–463, 2008.
[184]
E. D. Weinberg, “Iron and susceptibility to infectious disease,” Science, vol. 184, no. 4140, pp. 952–956, 1974.
[185]
F. López-Soto, N. León-Sicairos, M. Reyes-López et al., “Use and endocytosis of iron-containing proteins by Entamoeba histolytica trophozoites,” Infection, Genetics and Evolution, vol. 9, no. 6, pp. 1038–1050, 2009.
[186]
J. Tachezy and M. Wilson, “More on iron acquisition by parasitic protozoa,” Parasitology Today, vol. 15, no. 5, p. 207, 1999.
[187]
S. Vaňá?ová, D. Rasoloson, J. Rázga, I. Hrdy, J. Kulda, and J. Tachezy, “Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins,” Microbiology, vol. 147, no. 1, pp. 53–62, 2001.
[188]
R. A. Finkelstein, C. V. Sciortino, and M. A. McIntosh, “Role of iron in microbe-host interactions,” Reviews of Infectious Diseases, vol. 5, supplement, pp. S759–S777, 1983.
[189]
E. D. Weinberg, “The role of iron in protozoan and fungal infectious diseases,” Journal of Eukaryotic Microbiology, vol. 46, no. 3, pp. 231–238, 1999.
[190]
A. Jacobs and M. Worwood, Iron in Biochemistry and Medicine, Academic Press, London, UK, 1980.
[191]
S. Said-Fernandez and R. Lopez-Revilla, “Subcellular distribution and stability of the major hemolytic activity of Entamoeba histolytica trophozoites,” Zeitschrift fur Parasitenkunde, vol. 67, no. 3, pp. 249–254, 1982.
[192]
V. Tsutsumi, A. Martinez-Palomo, and K. Tanikawa, “Scanning electron microscopy of erythrophagocytosis by Entamoeba histolytica trophozoites,” Archives of Medical Research, vol. 23, no. 2, pp. 173–175, 1992.
[193]
J. Vargas-Villarreal, H. Martinez-Rodriguez, J. Castro-Garza, B. D. Mata-Cardenas, M. T. Gonzalez-Garza, and S. Said-Fernandez, “Identification of Entamoeba histolytica intracellular phospholipase A and lysophospholipase L1 activities,” Parasitology Research, vol. 81, no. 4, pp. 320–323, 1995.
[194]
A. Chévez, I. Iturbe-Alessio, M. Segura, and D. Corona, “Phagocytosis of human erythrocytes by Entamoeba histolytica,” Archivos de Investigacion Medica, vol. 2, pp. 2–286, 1972.
[195]
J. Mora-Galindo and F. Anaya-Velazquez, “Intracellular digestion of human erythrocytes by Entamoeba histolytica: a kinetic study in vitro,” Archives of Medical Research, vol. 24, no. 4, pp. 347–351, 1993.
[196]
J. Mora-Galindo, M. Gutierrez-Lozano, and F. Anaya-Velazquez, “Entamoeba histolytica: kinetics of hemolytic activity, erythrophagocytosis and digestion of erythrocytes,” Archives of Medical Research, vol. 28, pp. 200–201, 1997.
[197]
R. Jarumilinta and B. G. Maegraith, “The patterns of some proteolytic enzymes of Entamoeba histolytica and Acanthamoeba sp—I. The action of E. histolytica and Acanthamoeba sp. on protein substrates,” Annals of Tropical Medicine and Parasitology, vol. 55, pp. 505–517, 1961.
[198]
I. Becker, R. Pérez-Montfort, A. Pérez-Torres, A. Rondán-Zárate, I. Montfort, and R. Pérez-Tamayo, “Entamoeba histolytica: localization of a 30-kDa cysteine proteinase using a monoclonal antibody,” Experimental Parasitology, vol. 82, no. 2, pp. 171–181, 1996.
[199]
J. Mora-Galindo, F. Anaya-Velázquez, S. Ramírez-Romo, and A. González-Robles, “Entamoeba histolytica: correlation of assessment methods to measure erythrocyte digestion, and effect of cysteine proteinases inhibitors in HM-1:IMSS and HK-9:NIH strains,” Experimental Parasitology, vol. 108, no. 3-4, pp. 89–100, 2004.
[200]
A. Bezkorovainy, “Biochemistry of nonheme iron in man—I. Iron proteins and cellular iron metabolism,” Clinical Physiology and Biochemistry, vol. 7, no. 1, pp. 1–17, 1989.
[201]
J. A. Fernandez-Pol and D. J. Klos, “Isolation and characterization of Normal Rat Kidney cell membrane proteins with affinity for transferrin,” Biochemistry, vol. 19, no. 17, pp. 3904–3912, 1980.
[202]
M. Reyes-López, J. D. J. Serrano-Luna, E. Negrete-Abascal, N. León-Sicairos, A. L. Guerrero-Barrera, and M. De la Garza, “Entamoeba histolytica: transferrin binding proteins,” Experimental Parasitology, vol. 99, no. 3, pp. 132–140, 2001.
[203]
J. Langhorst and J. Boone, “Fecal lactoferrin as a noninvasive biomarker in inflammatory bowel diseases,” Drugs Today, vol. 48, no. 2, pp. 149–161, 2012.
[204]
R. D. Brines and J. H. Brock, “The effect of trypsin and chymotrypsin on the in vitro antimicrobial and iron-binding properties of lactoferrin in human milk and bovine colostrum. Unusual resistance of human apolactoferrin to proteolytic digestion,” Biochimica et Biophysica Acta, vol. 759, no. 3, pp. 229–235, 1983.
[205]
P. Aisen and A. Leibman, “Lactoferrin and transferrin: a comparative study,” Biochimica et Biophysica Acta, vol. 257, no. 2, pp. 314–323, 1972.
[206]
E. N. Baker and H. M. Baker, “Molecular structure, binding properties and dynamics of lactoferrin,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2531–2539, 2005.
[207]
J. A. Talbot, K. Nielsen, and L. B. Corbeil, “Cleavage of proteins of reproductive secretions by extracellular proteinases of Tritrichomonas foetus,” Canadian Journal of Microbiology, vol. 37, no. 5, pp. 384–390, 1991.
[208]
P. Arosio and S. Levi, “Ferritin, iron homeostasis, and oxidative damage,” Free Radical Biology and Medicine, vol. 33, no. 4, pp. 457–463, 2002.
[209]
P. M. Harrison and P. Arosio, “The ferritins: molecular properties, iron storage function and cellular regulation,” Biochimica et Biophysica Acta, vol. 1275, no. 3, pp. 161–203, 1996.
[210]
A. M. Koorts and M. Viljoen, “Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion,” Archives of Physiology and Biochemistry, vol. 113, no. 1, pp. 30–54, 2007.
[211]
X. Liu and E. C. Theil, “Ferritins: dynamic management of biological iron and oxygen chemistry,” Accounts of Chemical Research, vol. 38, no. 3, pp. 167–175, 2005.
[212]
R. Lopez-Revilla and S. Said-Fernandez, “Cytopathogenicity of Entamoeba histolytica: hemolytic activity of trophozoite homogenates,” American Journal of Tropical Medicine and Hygiene, vol. 29, no. 2, pp. 209–212, 1980.
[213]
C. Shimokawa, M. Kabir, M. Taniuchi, D. Mondal, S. Kobayashi, and I. K. M. Ali, “Entamoeba moshkovskii is associated with diarrhea in infants and causes diarrhea and colitis in mice,” Journal of Infectious Diseases, vol. 206, no. 5, pp. 744–751, 2012.
[214]
C. G. Clark and L. S. Diamond, “The Laredo strain and other Entamoeba histolytica-like amoebae are Entamoeba moshkovskii,” Molecular and Biochemical Parasitology, vol. 46, no. 1, pp. 11–18, 1991.
[215]
R. D. Heredia, J. A. Fonseca, and M. C. López, “Entamoeba moshkovskii perspectives of a new agent to be considered in the diagnosis of amebiasis,” Acta Tropica, vol. 123, no. 3, pp. 139–145, 2012.
[216]
M. Goldman, “Entamoeba histolytica-like amoebae ocurring in man,” Bulletin of the World Health Organization, vol. 40, pp. 355–364, 1969.
[217]
I. K. M. Ali, C. G. Clark, and W. A. Petri Jr., “Molecular epidemiology of amebiasis,” Infection, Genetics and Evolution, vol. 8, no. 5, pp. 698–707, 2008.
[218]
Z. Hamzah, S. Petmitr, M. Mungthin, S. Leelayoova, and P. Chavalitshewinkoon-Petmitr, “Development of multiplex real-time polymerase chain reaction for detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in clinical specimens,” American Journal of Tropical Medicine and Hygiene, vol. 83, no. 4, pp. 909–913, 2010.
[219]
WHO, ““Amoebiasis,” World Health Organization/Pan America Health Organization Expert Consultation on Amoebiasis,” WHO Weekly Epidemiological Record, vol. 72, pp. 97–100, 1997.
[220]
S. S. Dolabella, J. Serrano-Luna, F. Navarro-García et al., et al., “Amoebic liver abscess production by Entamoeba dispar,” Annals of Hepatology, vol. 11, no. 1, pp. 107–117, 2012.
[221]
W. M. Spice and J. P. Ackers, “The effect of axenic versus xenic culture conditions on the total and secreted proteolytic activity of Entamoeba histolytica strains,” Archives of Medical Research, vol. 23, no. 2, pp. 91–93, 1992.
[222]
B. Loftus, I. Anderson, R. Davies et al., “The genome of the protist parasite Entamoeba histolytica,” Nature, vol. 433, no. 7028, pp. 865–868, 2005.
[223]
I. Bruchhaus and E. Tannich, “A gene highly homologous to ACP1 encoding cysteine proteinase 3 in Entamoeba histolytica is present and expressed in E. dispar,” Parasitology Research, vol. 82, no. 2, pp. 189–192, 1996.
[224]
E. Tannich, “Recent advances in DNA-mediated gene transfer of Entamoeba histolytica,” Parasitology Today, vol. 12, no. 5, pp. 198–200, 1996.
[225]
B. N. Mitra, T. Yasuda, S. Kobayashi, Y. Saito-Nakano, and T. Nozaki, “Differences in morphology of phagosomes and kinetics of acidification and degradation in phagosomes between the pathogenic Entamoeba histolytica and the non-pathogenic Entamoeba dispar,” Cell Motility and the Cytoskeleton, vol. 62, no. 2, pp. 84–99, 2005.
[226]
J. E. Teixeira, A. Sateriale, K. E. Bessoff, and C. D. Huston, “Control of Entamoeba histolytica adherence involves metallosurface protease 1, an M8 family surface metalloprotease with homology to leishmanolysin,” Infection and Immunity, vol. 80, no. 6, pp. 2165–2176, 2012.
[227]
F. Ebert, A. Bachmann, K. Nakada-Tsukui et al., “An Entamoeba cysteine peptidase specifically expressed during encystation,” Parasitology International, vol. 57, no. 4, pp. 521–524, 2008.
[228]
G. Jeelani, D. Sato, A. Husain, A. Escueta-de Cadiz, M. Sugimoto, and T. Soga, “Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation,” PLoS ONE, vol. 7, no. 5, Article ID e37740, 2012.
[229]
E. E. ávila, M. Sánchez-Garza, and J. Calderón, “Entamoeba histolytica and E. invadens: sulfhydryl-dependent proteolytic activity1,” Journal of Eukaryotic Microbiology, vol. 32, no. 1, pp. 163–166, 1985.
[230]
S. K. Ghosh, J. Field, M. Frisardi et al., “Chitinase secretion by encysting Entamoeba invadens and transfected Entamoeba histolytica trophozoites: localization of secretory vesicles, endoplasmic reticulum, and Golgi apparatus,” Infection and Immunity, vol. 67, no. 6, pp. 3073–3081, 1999.
[231]
K. L. Van Dellen, A. Chatterjee, D. M. Ratner et al., “Unique posttranslational modifications of chitin-binding lectins of Entamoeba invadens cyst walls,” Eukaryotic Cell, vol. 5, no. 5, pp. 836–848, 2006.
[232]
J. Gonzalez, G. Bai, U. Frevert, E. J. Corey, and D. Eichinger, “Proteasome-dependent cyst formation and stage-specific ubiquitin mRNA accumulation in Entamoeba invadens,” European Journal of Biochemistry, vol. 264, no. 3, pp. 897–904, 1999.
[233]
H. Trabelsi, F. Dendana, A. Sellami, H. Sellami, F. Cheikhrouhou, and S. Neji, “Pathogenic fre-living amoeba: epidemiology and clinical review,” Pathologie Biologie, vol. 60, no. 6, pp. 399–405, 2012.
[234]
M. Oma?a-Molina, F. Navarro-García, A. González-Robles, J. d. Serrano-Luna, R. Campos-Rodríguez, and A. Martínez-Palomo, “Induction of morphological and electrophysiological changes in hamster cornea after in vitro interaction with trophozoites of Acanthamoeba spp,” Infection and Immunity, vol. 72, no. 6, pp. 3245–3251, 2004.
[235]
M. Garate, Z. Cao, E. Bateman, and N. Panjwani, “Cloning and characterization of a novel mannose-binding protein of Acanthamoeba,” Journal of Biological Chemistry, vol. 279, no. 28, pp. 29849–29856, 2004.
[236]
Y. C. Hong, W. M. Lee, H. H. Kong, H. J. Jeong, and D. I. Chung, “Molecular cloning and characterization of a cDNA encoding a laminin-binding protein (AhLBP) from Acanthamoeba healyi,” Experimental Parasitology, vol. 106, no. 3-4, pp. 95–102, 2004.
[237]
B. Da Rocha-Azevedo, M. Jamerson, G. A. Cabral, F. C. Silva-Filho, and F. Marciano-Cabral, “Acanthamoeba interaction with extracellular matrix glycoproteins: biological and biochemical characterization and role in cytotoxicity and invasiveness,” Journal of Eukaryotic Microbiology, vol. 56, no. 3, pp. 270–278, 2009.
[238]
V. R. Gordon, E. K. Asem, M. H. Vodkin, and G. L. McLaughlin, “Acanthamoeba binds to extracellular matrix proteins in vitro,” Investigative Ophthalmology and Visual Science, vol. 34, no. 3, pp. 658–662, 1993.
[239]
L. Wang, E. K. Asem, and G. L. McLaughlin, “Calcium enhances Acanthamoeba polyphaga binding to extracellular matrix proteins,” Investigative Ophthalmology and Visual Science, vol. 35, no. 5, pp. 2421–2426, 1994.
[240]
J. Sissons, S. K. Kwang, M. Stins, S. Jayasekera, S. Alsam, and N. A. Khan, “Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism,” Infection and Immunity, vol. 73, no. 5, pp. 2704–2708, 2005.
[241]
H. Alizadeh, S. Neelam, M. Hurt, and J. Y. Niederkorn, “Role of contact lens wear, bacterial flora, and mannose-induced pathogenic protease in the pathogenesis of amoebic keratitis,” Infection and Immunity, vol. 73, no. 2, pp. 1061–1068, 2005.
[242]
A. Ferrante and E. J. Bates, “Elastase in the pathogenic free-living amoebae Naegleria and Acanthamoeba spp,” Infection and Immunity, vol. 56, no. 12, pp. 3320–3321, 1988.
[243]
P. N. Mortazavi, E. Keisary, L. N. Loh, S. Y. Jung, and N. A. Khan, “Possible roles of phospholipase A2 in the biological activities of Acanthamoeba castellanii (T4 Genotype),” Protist, vol. 162, no. 1, pp. 168–176, 2011.
[244]
S. C. Alfieri, C. E. B. Correia, S. A. Motegi, and E. M. F. Pral, “Proteinase activities in total extracts and in medium conditioned by Acanthamoeba polyphaga trophozoites,” Journal of Parasitology, vol. 86, no. 2, pp. 220–227, 2000.
[245]
E. Hadas and T. Mazur, “Proteolytic enzymes of pathogenic and non-pathogenic strains of Acanthamoeba spp,” Tropical Medicine and Parasitology, vol. 44, no. 3, pp. 197–200, 1993.
[246]
M. M. Mitra, H. Alizadeh, R. D. Gerard, and J. Y. Niederkorn, “Characterization of a plasminogen activator produced by Acanthamoeba castellanii,” Molecular and Biochemical Parasitology, vol. 73, no. 1-2, pp. 157–164, 1995.
[247]
K. Mitro, A. Bhagavathiammai, O. M. Zhou et al., “Partial characterization of the proteolytic secretions of Acanthamoeba polyphaga,” Experimental Parasitology, vol. 78, no. 4, pp. 377–385, 1994.
[248]
N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” Journal of Clinical Microbiology, vol. 38, no. 8, pp. 2858–2861, 2000.
[249]
Y. He, J. Y. Niederkorn, J. P. McCulley et al., “In vivo and in vitro collagenolytic activity of Acanthamoeba castellanii,” Investigative Ophthalmology and Visual Science, vol. 31, no. 11, pp. 2235–2240, 1990.
[250]
G. A. Ferreira, A. C. M. Magliano, E. M. F. Pral, and S. C. Alfieri, “Elastase secretion in Acanthamoeba polyphaga,” Acta Tropica, vol. 112, no. 2, pp. 156–163, 2009.
[251]
H. H. Kong, T. H. Kim, and D. I. Chung, “Purification and characterization of a secretory serine proteinase of Acanthamoeba healyi isolated from GAE,” Journal of Parasitology, vol. 86, no. 1, pp. 12–17, 2000.
[252]
W. T. Kim, H. H. Kong, Y. R. Ha et al., “Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence,” The Korean Journal of Parasitology, vol. 44, no. 4, pp. 321–330, 2006.
[253]
A. J. Martinez, S. M. Markowitz, and R. J. Duma, “Experimental pneumonitis and encephalitis caused by Acanthamoeba in mice: pathogenesis and ultrastructural features,” Journal of Infectious Diseases, vol. 31, no. 6, pp. 692–699, 1975.
[254]
A. Martínez, “Free-living amoeba: natural history, prevention, diagnostic, pathology and treatment of disease,” p. 156, CRC Press, Boca Raton, Fla, USA, 1985.
[255]
A. J. Martinez, “Infection of the central nervous system due to Acanthamoeba,” Reviews of Infectious Diseases, vol. 13, no. 5, pp. S399–S402, 1991.
[256]
N. A. Khan, “Acanthamoeba invasion of the central nervous system,” International Journal for Parasitology, vol. 37, no. 2, pp. 131–138, 2007.
[257]
S. Alsam, J. Sissons, S. Jayasekera, and N. A. Khan, “Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood-brain barrier,” Journal of Infection, vol. 51, no. 2, pp. 150–156, 2005.
[258]
N. A. Khan and R. Siddiqui, “Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins,” International Journal for Parasitology, vol. 39, no. 14, pp. 1611–1616, 2009.
[259]
J. F. De Jonckheere, “Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri,” Infection, Genetics and Evolution, vol. 11, no. 7, pp. 1520–1528, 2011.
[260]
F. Marciano-Cabral, “Biology of Naegleria spp,” Microbiological Reviews, vol. 52, no. 1, pp. 114–133, 1988.
[261]
I. Cervantes-Sandoval, J. D. J. Serrano-Luna, E. García-Latorre, V. Tsutsumi, and M. Shibayama, “Characterization of brain inflammation during primary amoebic meningoencephalitis,” Parasitology International, vol. 57, no. 3, pp. 307–313, 2008.
[262]
K. L. Jarolim, J. K. McCosh, M. J. Howard, and D. T. John, “A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice,” Journal of Parasitology, vol. 86, no. 1, pp. 50–55, 2000.
[263]
K. L. Han, H. J. Lee, H. S. Myeong, H. J. Shin, K. I. Im, and S. J. Park, “The involvement of an integrin-like protein and protein kinase C in amoebic adhesion to fibronectin and amoebic cytotoxicity,” Parasitology Research, vol. 94, no. 1, pp. 53–60, 2004.
[264]
R. Herbst, C. Ott, T. Jacobs, T. Marti, F. Marciano-Cabral, and M. Leippe, “Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22353–22360, 2002.
[265]
J. D. E. Young and D. M. Lowrey, “Biochemical and functional characterization of a membrane-associated pore-forming protein from the pathogenic ameboflagellate Naegleria fowleri,” Journal of Biological Chemistry, vol. 264, no. 2, pp. 1077–1083, 1989.
[266]
S. E. Barbour and F. Marciano-Cabral, “Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A2,” Biochimica et Biophysica Acta, vol. 1530, no. 2-3, pp. 123–133, 2001.
[267]
D. E. Fulford and F. Marciano-Cabral, “Cytolytic activity of Naegleria fowleri cell-free extract,” Journal of Protozoology, vol. 33, no. 4, pp. 498–502, 1986.
[268]
M. Shibayama, J. D. J. Serrano-Luna, S. Rojas-Hernández, R. Campos-Rodríguez, and V. Tsutsumi, “Interaction of secretory immunoglobulin A antibodies with Naegleria fowleri trophozoites and collagen type I,” Canadian Journal of Microbiology, vol. 49, no. 3, pp. 164–170, 2003.
[269]
I. Cervantes-Sandoval, J. Jesús Serrano-Luna, J. Pacheco-Yépez, A. Silva-Olivares, V. Tsutsumi, and M. Shibayama, “Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates,” Parasitology Research, vol. 106, no. 3, pp. 695–701, 2010.
[270]
M. Jamerson, B. da Rocha-Azevedo, G. A. Cabral, and F. Marciano-Cabral, “Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins,” Microbiology, vol. 158, pp. 791–803, 2012.
[271]
F. L. Schuster and G. S. Visvesvara, “Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals,” International Journal for Parasitology, vol. 34, no. 9, pp. 1001–1027, 2004.
[272]
B. A. Rideout, C. H. Gardiner, I. H. Stalis, J. R. Zuba, T. Hadfield, and G. S. Visvesvara, “Fatal infections with Balamuthia mandrillaris (a free-living amoeba) in gorillas and other old world primates,” Veterinary Pathology, vol. 34, no. 1, pp. 15–22, 1997.
[273]
T. H. Dunnebacke, F. L. Schuster, S. Yagi, and G. C. Booton, “Balamuthia mandrillaris from soil samples,” Microbiology, vol. 150, no. 9, pp. 2837–2842, 2004.
[274]
A. Matin and N. A. Khan, “Demonstration and partial characterization of ecto-ATPase in Balamuthia mandrillaris and its possible role in the host-cell interactions,” Letters in Applied Microbiology, vol. 47, no. 4, pp. 348–354, 2008.
[275]
A. Martínez and G. S. Visvesvara, “Balamuthia mandrillaris infection,” Journal of Medical Microbiology, vol. 50, no. 3, pp. 205–207, 2001.
[276]
K. Janitschke, A. J. Martínez, G. S. Visvesvara, and F. Schuster, “Animal model Balamuthia mandrillaris CNS infection: contrast and comparison in immunodeficient and immunocompetent mice: a murine model of “granulomatous” amebic encephalitis,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 7, pp. 815–821, 1996.
[277]
A. F. Kiderlen and U. Laube, “Balamuthia mandrillaris, an opportunistic agent of granulomatous amebic encephalitis, infects the brain via the olfactory nerve pathway,” Parasitology Research, vol. 94, no. 1, pp. 49–52, 2004.
[278]
F. L. Schuster, T. H. Dunnebacke, G. C. Booton et al., “Environmental isolation of Balamuthia mandrillaris associated with a case of amebic encephalitis,” Journal of Clinical Microbiology, vol. 41, no. 7, pp. 3175–3180, 2003.
[279]
F. L. Schuster and G. S. Visvesvara, “Axenic growth and drug sensitivity studies of Balamuthia mandrillaris, an agent of amebic meningoencephalitis in humans and other animals,” Journal of Clinical Microbiology, vol. 34, no. 2, pp. 385–388, 1996.
[280]
S. Jayasekera, A. Matin, J. Sissons, A. H. Maghsood, and N. A. Khan, “Balamuthia mandrillaris stimulates interleukin-6 release in primary human brain microvascular endothelial cells via a phosphatidylinositol 3-kinase-dependent pathway,” Microbes and Infection, vol. 7, no. 13, pp. 1345–1351, 2005.
[281]
B. Rocha-Azevedo, M. Jamerson, G. A. Cabral, F. C. Silva-Filho, and F. Marciano-Cabral, “The interaction between the amoeba Balamuthia mandrillaris and extracellular matrix glycoproteins in vitro,” Parasitology, vol. 134, no. 1, pp. 51–58, 2007.