Malaria transmission pattern was studied in 3 villages (Toubanding, Daga Ndoup, and Keur Samba Guèye) situated within an area selected for clinical trials. The study was conducted in the rainy season from July to December 2011. The main objective of this work was to gather baseline data on malaria transmission intensity and other entomological parameters before the advent of clinical trials. Mosquitoes were collected by Human-Landing Collections (HLCs) and by pyrethrum spray catches (PSCs). Five anopheline species were collected, namely, An. arabiensis, An. gambiae, An. funestus, An. pharoensis, and An. rufipes, giving a heterogeneous distribution within the study area. The populations dynamics of the vectors varied temporarily in each village depending on the pattern of the rainy season. Transmission intensity estimated by the entomological inoculation rate (EIR) was measured in each of the three villages with the variations linked to the microecological differences between the villages. Measurements were calculated for August, September, and October and were found to vary between 4 and 30 infected bites per person over the study period with a peak intensity observed in September. These results indicate that epidemiological field trials on malaria could be conducted in this area on the basis of the differences observed with transmission intensity, micro-ecological variations, and the objectives of the trials. 1. Background Malaria continues to be a major public health problem throughout the world despite more than a century of study, especially in Africa where 90% of the global cases are recorded. The situation is worsening due to the spread of drug resistant parasites strains, spread of insecticide resistance in the vector populations, and poor economic status of endemic populations [1]. To alleviate the problem, an integrated approach against both the parasites and vectors for an effective control is necessary. Over the last five years, considerable efforts have been made to control malaria in many countries around the world (especially in Sub-Saharan Africa) using strategic measures with available tools. This has led to the decline in malaria transmission in many parts of Africa [2, 3]. These changes are as a result of an extensive use of long-lasting insecticidal nets (LLINs) and improved malaria diagnosis and treatment. However, despite these significant progresses, malaria remains an acute problem killing 800000 people each year, mostly children under five years living in Sub-Saharan Africa [1]. The situation is particularly worrying with the
References
[1]
WHO, World Malaria Report 2011, WHO Press, Geneva, Switzerland, 2011.
[2]
S. J. Ceesay, C. Casals-Pascual, D. C. Nwakanma et al., “Continued decline of malaria in The Gambia with implications for elimination,” PLoS ONE, vol. 5, no. 8, Article ID e12242, 2010.
[3]
B. M. Greenwood, D. A. Fidock, D. E. Kyle et al., “Malaria: progress, perils, and prospects for eradication,” Journal of Clinical Investigation, vol. 118, no. 4, pp. 1266–1276, 2008.
[4]
J. Tumwiine, J. Y. T. Mugisha, and L. S. Luboobi, “A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1953–1965, 2007.
[5]
A. C. Ghani, C. J. Sutherland, E. M. Riley et al., “Loss of population levels of immunity to malaria as a result of exposure-reducing interventions: consequences for interpretation of disease trends,” PLoS ONE, vol. 4, no. 2, Article ID e4383, 2009.
[6]
J. F. Trape, A. Tall, N. Diagne, et al., “Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study,” Lancet Infectious Disease, vol. 11, no. 12, pp. 925–932, 2011.
[7]
M. M. Riehle, W. M. Guelbeogo, A. Gneme et al., “A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites,” Science, vol. 331, no. 6017, pp. 596–598, 2011.
[8]
T. Smith, J. D. Charlwood, W. Takken, M. Tanner, and D. J. Spiegelhalter, “Mapping the densities of malaria vectors within a single village,” Acta Tropica, vol. 59, no. 1, pp. 1–18, 1995.
[9]
D. Fontenille, L. Lochouarn, N. Diagne et al., “High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal,” American Journal of Tropical Medicine and Hygiene, vol. 56, no. 3, pp. 247–253, 1997.
[10]
P. D. McElroy, J. C. Beier, C. N. Oster et al., “Predicting outcome in malaria: correlation between rate of exposure to infected mosquitoes and level of Plasmodium falciparum parasitemia,” American Journal of Tropical Medicine and Hygiene, vol. 51, no. 5, pp. 523–532, 1994.
[11]
D. Fontenille, L. Lochouarn, M. Diatta et al., “Four years' entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and v,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 91, no. 6, pp. 647–652, 1997.
[12]
M. T. Gillies and B. De Meillon, “The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region),” Publications of the South African Institute of Medical Research, vol. 54, pp. 1–343, 1968.
[13]
T. S. Detinova, Age Grouping Methods in Diptera of Medical Importance with Special Reference to Some VecTors of Malaria, WHO Monograph, Geneva, Switzerland, 1962.
[14]
J. C. Beier, P. V. Perkins, R. A. Wirtz et al., “Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya,” Journal of Medical Entomology, vol. 25, no. 1, pp. 9–16, 1988.
[15]
R. A. Wirtz, F. Zavala, and Y. Charoenvit, “Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development,” Bulletin of the World Health Organization, vol. 65, no. 1, pp. 39–45, 1987.
[16]
C. Fanello, V. Petrarca, A. della Torre et al., “The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s.,” Insect Molecular Biology, vol. 12, no. 3, pp. 241–245, 2003.
[17]
N. Diagne, D. Fontenille, L. Konate, et al., “Les anophèles du Sénégal: liste commentée et illustrée,” Bulletin De La Société De Pathologie Exotique, vol. 87, pp. 267–277, 1994.
[18]
J. F. Trape, C. Rogier, L. Konate et al., “The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal,” American Journal of Tropical Medicine and Hygiene, vol. 51, no. 2, pp. 123–137, 1994.
[19]
J. Brengues, J. Brunhes, and J. P. Hervy, “La filariose de Bancroft en Afrique, à Madagascar et dans les Iles voisines,” Etudes Médicales, vol. 1, pp. 1–85, 1979.
[20]
V. Robert, H. Dieng, L. Lochouarn et al., “La transmission du paludisme dans la zone de Niakhar, Senegal,” Tropical Medicine and International Health, vol. 3, no. 8, pp. 667–677, 1998.
[21]
I. Dia, T. Diop, I. Rakotoarivony, P. Kengne, and D. Fontenille, “Bionomics of Anopheles gambiae Giles, A. arabiensis Patton, A. funestus Giles and A. nili (Theobald) and transmission of Plasmodium falciparum in a Sudano- Guinean zone (Ngari, Senegal),” Journal of Medical Entomology, vol. 40, no. 3, pp. 279–283, 2003.
[22]
I. Dia, L. Konate, B. Samb et al., “Bionomics of malaria vectors and relationship with malaria transmission and epidemiology in three physiographic zones in the Senegal River Basin,” Acta Tropica, vol. 105, no. 2, pp. 145–153, 2008.
[23]
V. Robert, V. Ouedraogo, and P. Carnevale, “La transmission du paludisme humain dans un village au centre de la rizière de la vallée du Kou, Burkina Faso,” Editions. ORSTOM, Collection études Et Thèses, pp. 5–12, 1991.
[24]
M. H. Coosemans, “Comparaison de l’endémie malarienne dans une zone de riziculture et dans une zone de culture de coton dans la plaine de Rusizi, Burundi,” Annales De La Société Belge De MéDecine Tropicale, vol. 65, pp. 187–200, 1985.
[25]
J. J. Lemasson, D. Fontenille, L. Lochouarn et al., “Comparison of behavior and vector Efficiency of A. gambiae and A. arabiensis (Diptera: Culicidae) in Barkedji, a Sahelian Area of Senegal,” Journal of Medical Entomology, vol. 34, no. 4, pp. 396–403, 1997.
[26]
J. C. Beier, P. V. Perkins, F. K. Onyango et al., “Characterization of malaria transmission by Anopheles (Diptera: Culicidae) in western Kenya in preparation for malaria vaccine trials,” Journal of Medical Entomology, vol. 27, no. 4, pp. 570–577, 1990.