全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neural Pathways Conveying Novisual Information to the Visual Cortex

DOI: 10.1155/2013/864920

Full-Text   Cite this paper   Add to My Lib

Abstract:

The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed. 1. Introduction The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization, in which the early visual areas (V1, V2) tune to general features while the higher-tier ones (V3A, V4v, V7, hMT+, and V8) respond selectively to the specific features of a visual stimulus [1–5]. Two parallel visual streams have been proposed to generalize the hierarchical organization of the visual processing [6–8]. The dorsal stream or “where” pathway serves to analyze visual spatial information about object location, motion, and visuomotor planning. In this pathway, visual signals are conveyed to the posterior parietal cortex through the dorsal part of the visual cortex (such as the V3d, V3A, V7, and hMT+) and finally reach the prefrontal cortex. The ventral stream or “what” pathway has been associated with the processing of form, object identity, and color. This pathway conveys visual signals along the ventral part of visual cortex (such as VP, V4, and V8), the inferior temporal (IT) areas, and finally to the prefrontal cortex. The structural and functional organization of the visual areas is supposed to develop through a combination of genetic instruction [9–11] and experience-dependent refinement [12, 13]. The role of visual experience in the development of the visual areas is supported by a large number of neuroimaging studies revealing that the visual areas of congenitally blind (CB) and early blind (EB) subjects have increased cortical thickness [14–17], local brain spontaneous activity [18], metabolism, and blood flow [19–22] and decreased regional volume [23–25], white matter integrity [26, 27], anatomical network efficiency [28, 29], and altered resting-state functional connectivity

References

[1]  K. Grill-Spector and R. Malach, “The human visual cortex,” Annual Review of Neuroscience, vol. 27, pp. 649–677, 2004.
[2]  B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in human cortex,” Neuron, vol. 56, no. 2, pp. 366–383, 2007.
[3]  D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cerebral Cortex, vol. 1, no. 1, pp. 1–47, 1991.
[4]  G. Golarai, D. G. Ghahremani, S. Whitfield-Gabrieli et al., “Differential development of high-level visual cortex correlates with category-specific recognition memory,” Nature Neuroscience, vol. 10, no. 4, pp. 512–522, 2007.
[5]  K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “Coding and binding of color and form in visual cortex,” Cerebral Cortex, vol. 20, no. 8, pp. 1946–1954, 2010.
[6]  J. V. Haxby, C. L. Grady, B. Horwitz et al., “Dissociation of object and spatial visual processing pathways in human extrastriate cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 5, pp. 1621–1625, 1991.
[7]  M. A. Goodale and A. David Milner, “Separate visual pathways for perception and action,” Trends in Neurosciences, vol. 15, no. 1, pp. 20–25, 1992.
[8]  C. S. Konen and S. Kastner, “Two hierarchically organized neural systems for object information in human visual cortex,” Nature Neuroscience, vol. 11, no. 2, pp. 224–231, 2008.
[9]  A. W. McGee, Y. Yang, Q. S. Fischer, N. W. Daw, and S. H. Strittmatter, “Neuroscience: experience-driven plasticity of visual cortex limited by myelin and nogo receptor,” Science, vol. 309, no. 5744, pp. 2222–2226, 2005.
[10]  E. Putignano, G. Lonetti, L. Cancedda et al., “Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity,” Neuron, vol. 53, no. 5, pp. 747–759, 2007.
[11]  J. W. Triplett, M. T. Owens, J. Yamada et al., “Retinal input instructs alignment of visual topographic maps,” Cell, vol. 139, no. 1, pp. 175–185, 2009.
[12]  Y. Li, S. D. Van Hooser, M. Mazurek, L. E. White, and D. Fitzpatrick, “Experience with moving visual stimuli drives the early development of cortical direction selectivity,” Nature, vol. 456, no. 7224, pp. 952–956, 2008.
[13]  Y. Yazaki-Sugiyama, S. Kang, H. Cteau, T. Fukai, and T. K. Hensch, “Bidirectional plasticity in fast-spiking GABA circuits by visual experience,” Nature, vol. 462, no. 7270, pp. 218–221, 2009.
[14]  J. Jiang, W. Zhu, F. Shi et al., “Thick visual cortex in the early blind,” Journal of Neuroscience, vol. 29, no. 7, pp. 2205–2211, 2009.
[15]  H. Park, J. D. Lee, E. Y. Kim et al., “Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area,” NeuroImage, vol. 47, no. 1, pp. 98–106, 2009.
[16]  H. Bridge, A. Cowey, N. Ragge, and K. Watkins, “Imaging studies in congenital anophthalmia reveal preservation of brain architecture in “visual“ cortex,” Brain, vol. 132, no. 12, pp. 3467–3480, 2009.
[17]  W. Qin, Y. Liu, T. Jiang, and C. Yu, “The development of visual areas depends differently on visual experience,” PLoS ONE, vol. 8, no. 1, Article ID e53784, 2013.
[18]  C. Liu, Y. Liu, W. Li et al., “Increased regional homogeneity of blood oxygen level-dependent signals in occipital cortex of early blind individuals,” NeuroReport, vol. 22, no. 4, pp. 190–194, 2011.
[19]  A. G. De Volder, A. Bol, J. Blin et al., “Brain energy metabolism in early blind subjects: neural activity in the visual cortex,” Brain Research, vol. 750, no. 1-2, pp. 235–244, 1997.
[20]  M. Mishina, M. Senda, M. Kiyosawa et al., “Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness,” NeuroImage, vol. 19, no. 1, pp. 125–131, 2003.
[21]  C. Veraart, A. G. De Volder, M. C. Wanet-Defalque, A. Bol, C. Michel, and A. M. Goffinet, “Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset,” Brain Research, vol. 510, no. 1, pp. 115–121, 1990.
[22]  F. Uhl, P. Franzen, I. Podreka, M. Steiner, and L. Deecke, “Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans,” Neuroscience Letters, vol. 150, no. 2, pp. 162–164, 1993.
[23]  M. Ptito, F. C. G. Schneider, O. B. Paulson, and R. Kupers, “Alterations of the visual pathways in congenital blindness,” Experimental Brain Research, vol. 187, no. 1, pp. 41–49, 2008.
[24]  U. Noppeney, K. J. Friston, J. Ashburner, R. Frackowiak, and C. J. Price, “Early visual deprivation induces structural plasticity in gray and white matter,” Current Biology, vol. 15, no. 13, pp. R488–R490, 2005.
[25]  W. Pan, G. Wu, C. Li, F. Lin, J. Sun, and H. Lei, “Progressive atrophy in the optic pathway and visual cortex of early blind Chinese adults: a voxel-based morphometry magnetic resonance imaging study,” NeuroImage, vol. 37, no. 1, pp. 212–220, 2007.
[26]  J. S. Shimony, H. Burton, A. A. Epstein, D. G. McLaren, S. W. Sun, and A. Z. Snyder, “Diffusion tensor imaging reveals white matter reorganization in early blind humans,” Cerebral Cortex, vol. 16, no. 11, pp. 1653–1661, 2006.
[27]  N. Shu, J. Li, K. Li, C. Yu, and T. Jiang, “Abnormal diffusion of cerebral white matter in early blindness,” Human Brain Mapping, vol. 30, no. 1, pp. 220–227, 2009.
[28]  N. Shu, Y. Liu, J. Li, Y. Li, C. Yu, and T. Jiang, “Altered anatomical network in early blindness revealed by diffusion tensor tractography,” PLoS ONE, vol. 4, no. 9, Article ID e7228, 2009.
[29]  J. Li, Y. Liu, W. Qin, et al., “Age of onset of blindness affects brain anatomical networks constructed using diffusion tensor tractography,” Cereb Cortex, vol. 23, no. 3, pp. 542–551, 2013.
[30]  C. Yu, Y. Liu, J. Li et al., “Altered functional connectivity of primary visual cortex in early blindness,” Human Brain Mapping, vol. 29, no. 5, pp. 533–543, 2008.
[31]  Y. Liu, C. Yu, M. Liang et al., “Whole brain functional connectivity in the early blind,” Brain, vol. 130, no. 8, pp. 2085–2096, 2007.
[32]  D. Bavelier and H. J. Neville, “Cross-modal plasticity: where and how?” Nature Reviews Neuroscience, vol. 3, no. 6, pp. 443–452, 2002.
[33]  K. Fiehler and F. R?sler, “Plasticity of multisensory dorsal stream functions: evidence from congenitally blind and sighted adults,” Restorative Neurology and Neuroscience, vol. 28, no. 2, pp. 193–205, 2010.
[34]  N. Sadato, “Chapter 11 Cross-modal plasticity in the blind revealed by functional neuroimaging,” Supplements to Clinical Neurophysiology, vol. 59, pp. 75–79, 2006.
[35]  K. Sathian and R. Stilla, “Cross-modal plasticity of tactile perception in blindness,” Restorative Neurology and Neuroscience, vol. 28, no. 2, pp. 271–281, 2010.
[36]  O. Collignon, P. Voss, M. Lassonde, and F. Lepore, “Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects,” Experimental Brain Research, vol. 192, no. 3, pp. 343–358, 2009.
[37]  E. Ricciardi, N. Vanello, L. Sani et al., “The effect of visual experience on the development of functional architecture in hMT+,” Cerebral Cortex, vol. 17, no. 12, pp. 2933–2939, 2007.
[38]  P. Pietrini, M. L. Furey, E. Ricciardi et al., “Beyond sensory images: object-based representation in the human ventral pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5658–5663, 2004.
[39]  K. Sathian, A. Zangaladze, J. M. Hoffman, and S. T. Grafton, “Feeling with the mind's eye,” NeuroReport, vol. 8, no. 18, pp. 3877–3881, 1997.
[40]  A. Zangaladze, C. M. Epstein, S. T. Grafton, and K. Sathian, “Involvement of visual cortex in tactile discrimination orientation,” Nature, vol. 401, no. 6753, pp. 587–590, 1999.
[41]  E. Ricciardi, D. Basso, L. Sani et al., “Functional inhibition of the human middle temporal cortex affects non-visual motion perception: a repetitive transcranial magnetic stimulation study during tactile speed discrimination,” Experimental Biology and Medicine, vol. 236, no. 2, pp. 138–144, 2011.
[42]  M. Ptito, I. Matteau, A. Zhi Wang, O. B. Paulson, H. R. Siebner, and R. Kupers, “Crossmodal recruitment of the ventral visual stream in congenital blindness,” Neural Plasticity, vol. 2012, Article ID 304045, 9 pages, 2012.
[43]  T. W. James, G. K. Humphrey, J. S. Gati, R. S. Menon, and M. A. Goodale, “Differential effects of viewpoint on object-driven activation in dorsal and ventral streams,” Neuron, vol. 35, no. 4, pp. 793–801, 2002.
[44]  T. W. James, G. K. Humphrey, J. S. Gati, P. Servos, R. S. Menon, and M. A. Goodale, “Haptic study of three-dimensional objects activates extrastriate visual areas,” Neuropsychologia, vol. 40, no. 10, pp. 1706–1714, 2002.
[45]  A. Amedi, G. Jacobson, T. Hendler, R. Malach, and E. Zohary, “Convergence of visual and tactile shape processing in the human lateral occipital complex zohary,” Cerebral Cortex, vol. 12, no. 11, pp. 1202–1212, 2002.
[46]  A. Amedi, R. Malach, T. Hendler, S. Peled, and E. Zohary, “Visuo-haptic object-related activation in the ventral visual pathway,” Nature Neuroscience, vol. 4, no. 3, pp. 324–330, 2001.
[47]  M. Zhang, V. D. Weisser, R. Stilla, S. C. Prather, and K. Sathian, “Multisensory cortical processing of object shape and its relation to mental imagery,” Cognitive, Affective and Behavioral Neuroscience, vol. 4, no. 2, pp. 251–259, 2004.
[48]  M. R. Stoesz, M. Zhang, V. D. Weisser, S. C. Prather, H. Mao, and K. Sathian, “Neural networks active during tactile form perception: common and differential activity during macrospatial and microspatial tasks,” International Journal of Psychophysiology, vol. 50, no. 1-2, pp. 41–49, 2003.
[49]  S. C. Prather, J. R. Votaw, and K. Sathian, “Task-specific recruitment of dorsal and ventral visual areas during tactile perception,” Neuropsychologia, vol. 42, no. 8, pp. 1079–1087, 2004.
[50]  I. Matteau, R. Kupers, E. Ricciardi, P. Pietrini, and M. Ptito, “Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals,” Brain Research Bulletin, vol. 82, no. 5-6, pp. 264–270, 2010.
[51]  F. Morrell, “Visual system's view of acoustic space,” Nature, vol. 238, no. 5358, pp. 44–46, 1972.
[52]  C. Poirier, O. Collignon, A. G. DeVolder et al., “Specific activation of the V5 brain area by auditory motion processing: an fMRI study,” Cognitive Brain Research, vol. 25, no. 3, pp. 650–658, 2005.
[53]  U. Zimmer, J. Lewald, M. Erb, W. Grodd, and H. Karnath, “Is there a role of visual cortex in spatial hearing?” European Journal of Neuroscience, vol. 20, no. 11, pp. 3148–3156, 2004.
[54]  C. Poirier, O. Collignon, C. Scheiber et al., “Auditory motion perception activates visual motion areas in early blind subjects,” NeuroImage, vol. 31, no. 1, pp. 279–285, 2006.
[55]  E. Ricciardi, “Brain response to visual, tactile and auditory flow in sighted and blind individuals supports a supramodal functional organization in hMT+ complex,” Neuroimage, vol. 31, no. 1, supplement, p. 512, 2006.
[56]  J. Lewald, I. G. Meister, J. Weidemann, and R. T?pper, “Involvement of the superior temporal cortex and the occipital cortex in spatial hearing: evidence from repetitive transcranial magnetic stimulation,” Journal of Cognitive Neuroscience, vol. 16, no. 5, pp. 828–838, 2004.
[57]  O. Collignon, M. Davare, E. Olivier, and A. G. De Volder, “Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. a transcranial magnetic stimulation study,” Brain Topography, vol. 21, no. 3-4, pp. 232–240, 2009.
[58]  O. Collignon, M. Davare, A. G. De Volder, C. Poirier, E. Olivier, and C. Veraart, “Time-course of posterior parietal and occipital cortex contribution to sound localization,” Journal of Cognitive Neuroscience, vol. 20, no. 8, pp. 1454–1463, 2008.
[59]  E. Ricciardi, D. Bonino, L. Sani et al., “Do we really need vision? How blind people “see” the actions of others,” Journal of Neuroscience, vol. 29, no. 31, pp. 9719–9724, 2009.
[60]  H. Burton, R. J. Sinclair, and D. G. McLaren, “Cortical activity to vibrotactile stimulation: an fMRI study in blind and sighted individuals,” Human Brain Mapping, vol. 23, no. 4, pp. 210–228, 2004.
[61]  M. Ptito, I. Matteau, A. Gjedde, and R. Kupers, “Recruitment of the middle temporal area by tactile motion in congenital blindness,” NeuroReport, vol. 20, no. 6, pp. 543–547, 2009.
[62]  R. Kupers, D. R. Chebat, K. H. Madsen, O. B. Paulson, and M. Ptito, “Neural correlates of virtual route recognition in congenital blindness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 28, pp. 12716–12721, 2010.
[63]  M. Ptito, S. M. Moesgaard, A. Gjedde, and R. Kupers, “Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind,” Brain, vol. 128, no. 3, pp. 606–614, 2005.
[64]  R. Kupers, A. Fumal, A. M. De Noordhout, A. Gjedde, J. Schoenen, and M. Ptito, “Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13256–13260, 2006.
[65]  P. Arno, A. G. De Volder, A. Vanlierde et al., “Occipital activation by pattern recognition in the early blind using auditory substitution for vision,” NeuroImage, vol. 13, no. 4, pp. 632–645, 2001.
[66]  L. A. Renier, I. Anurova, A. G. De Volder, S. Carlson, J. VanMeter, and J. P. Rauschecker, “Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind,” Neuron, vol. 68, no. 1, pp. 138–148, 2010.
[67]  R. Weeks, B. Horwitz, A. Aziz-Sultan et al., “A positron emission tomographic study of auditory localization in the congenitally blind,” Journal of Neuroscience, vol. 20, no. 7, pp. 2664–2672, 2000.
[68]  G. Dormal, F. Lepore, and O. Collignon, “Plasticity of the dorsal “spatial” stream in visually deprived individuals,” Neural Plasticity, vol. 2012, Article ID 687659, 12 pages, 2012.
[69]  O. Collignon, G. Vandewalle, P. Voss et al., “Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4435–4440, 2011.
[70]  T. Wolbers, P. Zahorik, and N. A. Giudice, “Decoding the direction of auditory motion in blind humans,” NeuroImage, vol. 56, no. 2, pp. 681–687, 2011.
[71]  M. Bedny, T. Konkle, K. Pelphrey, R. Saxe, and A. Pascual-Leone, “Sensitive period for a multimodal response in human visual motion area MT/MST,” Current Biology, vol. 20, no. 21, pp. 1900–1906, 2010.
[72]  A. Amedi, W. M. Stern, J. A. Camprodon et al., “Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex,” Nature Neuroscience, vol. 10, no. 6, pp. 687–689, 2007.
[73]  J. Kim and R. J. Zatorre, “Tactile-auditory shape learning engages the lateral occipital complex,” Journal of Neuroscience, vol. 31, no. 21, pp. 7848–7856, 2011.
[74]  E. Striem-Amit, O. Dakwar, L. Reich, and A. Amedi, “The large-scale organization of “visual” streams emerges without visual experience,” Cereb Cortex, vol. 22, no. 7, pp. 1698–1709, 2012.
[75]  B. R?der, W. Teder-S?lej?rvi, A. Sterr, F. R?sler, S. A. Hillyard, and H. J. Neville, “Improved auditory spatial tuning in blind humans,” Nature, vol. 400, no. 6740, pp. 162–166, 1999.
[76]  C. Leclerc, S. J. Segalowitz, J. Desjardins, M. Lassonde, and F. Lepore, “EEG coherence in early-blind humans during sound localization,” Neuroscience Letters, vol. 376, no. 3, pp. 154–159, 2005.
[77]  C. Leclerc, D. Saint-Amour, M. E. Lavoie, M. Lassonde, and F. Lepore, “Brain functional reorganization in early blind humans revealed by auditory event-related potentials,” NeuroReport, vol. 11, no. 3, pp. 545–550, 2000.
[78]  O. Collignon, M. Lassonde, F. Lepore, D. Bastien, and C. Veraart, “Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects,” Cerebral Cortex, vol. 17, no. 2, pp. 457–465, 2007.
[79]  L. B. Merabet, L. Battelli, S. Obretenova, S. Maguire, P. Meijer, and A. Pascual-Leone, “Functional recruitment of visual cortex for sound encoded object identification in the blind,” NeuroReport, vol. 20, no. 2, pp. 132–138, 2009.
[80]  R. Kupers, M. Beaulieu-Lefebvre, F. C. Schneider et al., “Neural correlates of olfactory processing in congenital blindness,” Neuropsychologia, vol. 49, no. 7, pp. 2037–2044, 2011.
[81]  M. Beaulieu-Lefebvre, F. C. Schneider, R. Kupers, and M. Ptito, “Odor perception and odor awareness in congenital blindness,” Brain Research Bulletin, vol. 84, no. 3, pp. 206–209, 2011.
[82]  I. Cuevas, P. Plaza, P. Rombaux, A. G. De Volder, and L. Renier, “Odour discrimination and identification are improved in early blindness,” Neuropsychologia, vol. 47, no. 14, pp. 3079–3083, 2009.
[83]  N. Sadato, A. Pascual-Leone, J. Grafman et al., “Activation of the primary visual cortex by Braille reading in blind subjects,” Nature, vol. 380, no. 6574, pp. 526–528, 1996.
[84]  L. G. Cohen, R. A. Weeks, N. Sadato, P. Celnik, K. Ishii, and M. Hallett, “Period of susceptibility for cross-modal plasticity in the blind,” Annals of Neurology, vol. 45, no. 4, pp. 451–460, 1999.
[85]  N. Sadato, T. Okada, M. Honda, and Y. Yonekura, “Critical period for cross-modal plasticity in blind humans: a functional MRI study,” NeuroImage, vol. 16, no. 2, pp. 389–400, 2002.
[86]  H. Burton, A. Z. Snyder, T. E. Conturo, E. Akbudak, J. M. Ollinger, and M. E. Raichle, “Adaptive changes in early and late blind: a fMRI study of Braille reading,” Journal of Neurophysiology, vol. 87, no. 1, pp. 589–607, 2002.
[87]  H. Burton, A. Z. Snyder, J. B. Diamond, and M. E. Raichle, “Adaptive changes in early and late blind: a fMRI study of verb generation to heard nouns,” Journal of Neurophysiology, vol. 88, no. 6, pp. 3359–3371, 2002.
[88]  H. Burton, J. B. Diamond, and K. B. McDermott, “Dissociating cortical regions activated by semantic and phonological tasks: a fMRI study in blind and sighted people,” Journal of Neurophysiology, vol. 90, no. 3, pp. 1965–1982, 2003.
[89]  B. R?der, O. Stock, S. Bien, H. Neville, and F. R?sler, “Speech processing activates visual cortex in congenitally blind humans,” European Journal of Neuroscience, vol. 16, no. 5, pp. 930–936, 2002.
[90]  L. Reich, M. Szwed, L. Cohen, and A. Amedi, “A ventral visual stream reading center independent of visual experience,” Current Biology, vol. 21, no. 5, pp. 363–368, 2011.
[91]  M. Bedny, A. Pascual-Leone, D. Dodell-Feder, E. Fedorenko, and R. Saxe, “Language processing in the occipital cortex of congenitally blind adults,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4429–4434, 2011.
[92]  L. G. Cohen, P. Celnik, A. Pascual-Leone et al., “Functional relevance of cross-modal plasticity in blind humans,” Nature, vol. 389, no. 6647, pp. 180–183, 1997.
[93]  A. Amedi, A. Floel, S. Knecht, E. Zohary, and L. G. Cohen, “Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects,” Nature Neuroscience, vol. 7, no. 11, pp. 1266–1270, 2004.
[94]  R. Hamilton, J. P. Keenan, M. Catala, and A. Pascual-Leone, “Alexia for Braille following bilateral occipital stroke in an early blind woman,” NeuroReport, vol. 11, no. 2, pp. 237–240, 2000.
[95]  K. Maeda, H. Yasuda, M. Haneda, and A. Kashiwagi, “Braille alexia during visual hallucination in a blind man with selective calcarine atrophy,” Psychiatry and Clinical Neurosciences, vol. 57, no. 2, pp. 227–229, 2003.
[96]  A. A. Stevens, M. Snodgrass, D. Schwartz, and K. Weaver, “Preparatory activity in occipital cortex in early blind humans predicts auditory perceptual performance,” Journal of Neuroscience, vol. 27, no. 40, pp. 10734–10741, 2007.
[97]  F. Gougoux, R. J. Zatorre, M. Lassonde, P. Voss, and F. Lepore, “A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals,” PLoS Biology, vol. 3, no. 2, article e27, 2005.
[98]  H. Burton, R. J. Sinclair, and A. Agato, “Recognition memory for Braille or spoken words: an fMRI study in early blind,” Brain Research, vol. 1438, pp. 22–34, 2012.
[99]  H. J. Park, “Activation of the occipital cortex and deactivation of the default mode network during working memory in the early blind,” Journal of the International Neuropsychological Society, vol. 17, pp. 407–422, 2011.
[100]  D. Bonino, E. Ricciardi, L. Sani et al., “Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals,” Archives Italiennes de Biologie, vol. 146, no. 3-4, pp. 133–146, 2008.
[101]  A. Amedi, N. Raz, P. Pianka, R. Malach, and E. Zohary, “Early “visual” cortex activation correlates with superior verbal memory performance in the blind,” Nature Neuroscience, vol. 6, no. 7, pp. 758–766, 2003.
[102]  K. Sathian and A. Zangaladze, “Feeling with the mind's eye: the role of visual imagery in tactile perception,” Optometry and Vision Science, vol. 78, no. 5, pp. 276–281, 2001.
[103]  S. M. Kosslyn, W. L. Thompson, I. J. Kim, and N. M. Alpert, “Topographical representations of mental images in primary visual cortex,” Nature, vol. 378, no. 6556, pp. 496–498, 1995.
[104]  S. M. Kosslyn, A. Pascual-Leone, O. Felician et al., “The role of area 17 in visual imagery: convergent evidence from PET and rTMS,” Science, vol. 284, no. 5411, pp. 167–170, 1999.
[105]  S. Lee, D. J. Kravitz, and C. I. Baker, “Disentangling visual imagery and perception of real-world objects,” NeuroImage, vol. 59, no. 4, pp. 4064–4073, 2012.
[106]  Z. Cattaneo, S. Bona, and J. Silvanto, “Cross-adaptation combined with TMS reveals a functional overlap between vision and imagery in the early visual cortex,” NeuroImage, vol. 59, no. 3, pp. 3015–3020, 2012.
[107]  R. Seurinck, F. P. de Lange, E. Achten, and G. Vingerhoets, “Mental rotation meets the motion aftereffect: the role of hV5/MT+ in visual mental imagery,” Journal of Cognitive Neuroscience, vol. 23, no. 6, pp. 1395–1404, 2011.
[108]  A. Kaas, S. Weigelt, A. Roebroeck, A. Kohler, and L. Muckli, “Imagery of a moving object: the role of occipital cortex and human MT/V5+,” NeuroImage, vol. 49, no. 1, pp. 794–804, 2010.
[109]  B. Z. Mahon, J. Schwarzbach, and A. Caramazza, “The representation of tools in left parietal cortex is independent of visual experience,” Psychological Science, vol. 21, no. 6, pp. 764–771, 2010.
[110]  B. Z. Mahon, S. Anzellotti, J. Schwarzbach, M. Zampini, and A. Caramazza, “Category-specific organization in the human brain does not require visual experience,” Neuron, vol. 63, no. 3, pp. 397–405, 2009.
[111]  O. Collignon and A. G. De Voider, “Further evidence that congenitally blind participants react faster to auditory and tactile spatial targets,” Canadian Journal of Experimental Psychology, vol. 63, no. 4, pp. 287–293, 2009.
[112]  O. Collignon, L. Renier, R. Bruyer, D. Tranduy, and C. Veraart, “Improved selective and divided spatial attention in early blind subjects,” Brain Research, vol. 1075, no. 1, pp. 175–182, 2006.
[113]  N. Lessard, M. Paré, F. Lepore, and M. Lassonde, “Early-blind human subjects localize sound sources better than sighted subjects,” Nature, vol. 395, no. 6699, pp. 278–280, 1998.
[114]  D. Goldreich and I. M. Kanics, “Tactile acuity is enhanced in blindness,” Journal of Neuroscience, vol. 23, no. 8, pp. 3439–3445, 2003.
[115]  R. W. Van Boven, R. H. Hamilton, T. Kauffman, J. P. Keenan, and A. Pascual-Leone, “Tactile spatial resolution in blind Braille readers,” Neurology, vol. 54, no. 12, pp. 2230–2236, 2000.
[116]  L. Sani, E. Ricciardi, C. Gentili, N. Vanello, J. V. Haxby, and P. Pietrini, “Effects of visual experience on the human MT+ functional connectivity networks: an fMRI study of motion perception in sighted and congenitally blind individuals,” Frontiers in Systems Neuroscience, vol. 4, article 159, 2010.
[117]  J. P. Rauschecker, B. Tian, M. Korte, and U. Egert, “Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 11, pp. 5063–5067, 1992.
[118]  J. P. Rauschecker and M. Korte, “Auditory compensation for early blindness in cat cerebral cortex,” Journal of Neuroscience, vol. 13, no. 10, pp. 4538–4548, 1993.
[119]  J. P. Rauschecker, “Compensatory plasticity and sensory substitution in the cerebral cortex,” Trends in Neurosciences, vol. 18, no. 1, pp. 36–43, 1995.
[120]  A. Morel, M. Magnin, and D. Jeanmonod, “Multiarchitectonic and stereotactic atlas of the human thalamus,” Journal of Comparative Neurology, vol. 387, no. 4, pp. 588–630, 1997.
[121]  G. Percheron, C. Fran?ois, B. Talbi, J. Yelnik, and G. Fénelon, “The primate motor thalamus,” Brain Research Reviews, vol. 22, no. 2, pp. 93–181, 1996.
[122]  A. M. Sillito, J. Cudeiro, and H. E. Jones, “Always returning: feedback and sensory processing in visual cortex and thalamus,” Trends in Neurosciences, vol. 29, no. 6, pp. 307–316, 2006.
[123]  J. A. Winer, M. L. Chernock, D. T. Larue, and S. W. Cheung, “Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey,” Hearing Research, vol. 168, no. 1-2, pp. 181–195, 2002.
[124]  L. Li and F. F. Ebner, “Cortical modulation of spatial and angular tuning maps in the rat thalamus,” Journal of Neuroscience, vol. 27, no. 1, pp. 167–179, 2007.
[125]  Y. Lam and S. M. Sherman, “Functional organization of the somatosensory cortical layer 6 feedback to the thalamus,” Cerebral Cortex, vol. 20, no. 1, pp. 13–24, 2010.
[126]  M. Iacoboni, “Adjusting reaches: feedback in the posterior parietal cortex,” Nature Neuroscience, vol. 2, no. 6, pp. 492–494, 1999.
[127]  M. A. Sommer and R. H. Wurtz, “What the brain stem tells the frontal cortex—I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus,” Journal of Neurophysiology, vol. 91, no. 3, pp. 1381–1402, 2004.
[128]  L. M. Romanski, M. Giguere, J. F. Bates, and P. S. Goldman-Rakic, “Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey,” Journal of Comparative Neurology, vol. 379, no. 3, pp. 313–332, 1997.
[129]  E. Salzmann, “Attention and memory trials during neuronal recording from the primate pulvinar and posterior parietal cortex (area PG),” Behavioural Brain Research, vol. 67, no. 2, pp. 241–253, 1995.
[130]  C.-S. Lin and J. H. Kaas, “Projections from the medial nucleus of the inferior pulvinar complex to the middle temporal area of the visual cortex,” Neuroscience, vol. 5, no. 12, pp. 2219–2228, 1980.
[131]  D. A. Simpson, “The projection of the pulvinar to the temporal lobe,” Journal of Anatomy, vol. 86, no. 1, pp. 20–28, 1952.
[132]  S. Shipp, “The functional logic of cortico-pulvinar connections,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1438, pp. 1605–1624, 2003.
[133]  N. Chabot, V. Charbonneau, M. Laramée, R. Tremblay, D. Boire, and G. Bronchti, “Subcortical auditory input to the primary visual cortex in anophthalmic mice,” Neuroscience Letters, vol. 433, no. 2, pp. 129–134, 2008.
[134]  R. Izraeli, G. Koay, M. Lamish et al., “Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour,” European Journal of Neuroscience, vol. 15, no. 4, pp. 693–712, 2002.
[135]  N. Doron and Z. Wollberg, “Cross-modal neuroplasticity in the blind mole rat Spalax Ehrenbergi: a WGA-HRP tracing study,” NeuroReport, vol. 5, no. 18, pp. 2697–2701, 1994.
[136]  M. Piché, N. Chabot, G. Bronchti, D. Miceli, F. Lepore, and J.-P. Guillemot, “Auditory responses in the visual cortex of neonatally enucleated rats,” Neuroscience, vol. 145, no. 3, pp. 1144–1156, 2007.
[137]  M. Piché, S. Robert, D. Miceli, and G. Bronchti, “Environmental enrichment enhances auditory takeover of the occipital cortex in anophthalmic mice,” European Journal of Neuroscience, vol. 20, no. 12, pp. 3463–3472, 2004.
[138]  G. Bronchti, P. Heil, R. Sadka, A. Hess, H. Scheich, and Z. Wollberg, “Auditory activation of “visual” cortical areas in the blind mole rat (Spalax ehrenbergi),” European Journal of Neuroscience, vol. 16, no. 2, pp. 311–329, 2002.
[139]  N. Chabot, S. Robert, R. Tremblay, D. Miceli, D. Boire, and G. Bronchti, “Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants,” European Journal of Neuroscience, vol. 26, no. 8, pp. 2334–2348, 2007.
[140]  S. J. Karlen, D. M. Kahn, and L. Krubitzer, “Early blindness results in abnormal corticocortical and thalamocortical connections,” Neuroscience, vol. 142, no. 3, pp. 843–858, 2006.
[141]  G. Rehkamper, R. Necker, and E. Nevo, “Functional anatomy of the thalamus in the blind mole rat Spalax ehrenbergi: an architectonic and electrophysiologically controlled tracing study,” Journal of Comparative Neurology, vol. 347, no. 4, pp. 570–584, 1994.
[142]  G. Bronchti, R. Rado, J. Terkel, and Z. Wollberg, “Retinal projections in the blind mole rat: a WGA-HRP tracing study of a natural degenertion,” Developmental Brain Research, vol. 58, no. 2, pp. 159–170, 1991.
[143]  Y. B. Saalmann, M. A. Pinsk, L. Wang, X. Li, and S. Kastner, “The pulvinar regulates information transmission between cortical areas based on attention demands,” Science, vol. 337, no. 6095, pp. 753–756, 2012.
[144]  J. H. Kaas and D. C. Lyon, “Pulvinar contributions to the dorsal and ventral streams of visual processing in primates,” Brain Research Reviews, vol. 55, no. 2, pp. 285–296, 2007.
[145]  C. Casanova, L. Merabet, A. Desautels, and K. Minville, “Higher-order motion processing in the pulvinar,” Progress in Brain Research, vol. 134, pp. 71–82, 2001.
[146]  K. L. Grieve, C. Acu?a, and J. Cudeiro, “The primate pulvinar nuclei: vision and action,” Trends in Neurosciences, vol. 23, no. 1, pp. 35–39, 2000.
[147]  A. Gaglianese, M. Costagli, G. Bernardi, E. Ricciardi, and P. Pietrini, “Evidence of a direct influence between the thalamus and hMT+ independent of V1 in the human brain as measured by fMRI,” NeuroImage, vol. 60, no. 2, pp. 1440–1447, 2012.
[148]  M. A. Schoenfeld, H.-J. Heinze, and M. G. Woldorff, “Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortex,” NeuroImage, vol. 17, no. 2, pp. 769–779, 2002.
[149]  L. G. Ungerleider, R. Desimone, T. W. Galkin, and M. Mishkin, “Subcortical projections of area MT in the Macaque,” Journal of Comparative Neurology, vol. 223, no. 3, pp. 368–386, 1984.
[150]  A. Lysakowski, G. P. Standage, and L. A. Benevento, “An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: a double label retrograde tracer study,” Experimental Brain Research, vol. 69, no. 3, pp. 651–661, 1988.
[151]  M. C. Schmid, S. W. Mrowka, J. Turchi et al., “Blindsight depends on the lateral geniculate nucleus,” Nature, vol. 466, no. 7304, pp. 373–377, 2010.
[152]  A. S. Bock, C. D. Kroenke, E. N. Taber, and J. F. Olavarria, “Retinal input influences the size and corticocortical connectivity of visual cortex during postnatal development in the ferret,” Journal of Comparative Neurology, vol. 520, no. 5, pp. 914–932, 2012.
[153]  A. Falchier, S. Clavagnier, P. Barone, and H. Kennedy, “Anatomical evidence of multimodal integration in primate striate cortex,” Journal of Neuroscience, vol. 22, no. 13, pp. 5749–5759, 2002.
[154]  E. Budinger, P. Heil, A. Hess, and H. Scheich, “Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems,” Neuroscience, vol. 143, no. 4, pp. 1065–1083, 2006.
[155]  H. Ruth Clemo, G. K. Sharma, B. L. Allman, and M. Alex Meredith, “Auditory projections to extrastriate visual cortex: connectional basis for multisensory processing in 'unimodal' visual neurons,” Experimental Brain Research, vol. 191, no. 1, pp. 37–47, 2008.
[156]  A. Falchier, C. E. Schroeder, T. A. Hackett et al., “Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey,” Cerebral Cortex, vol. 20, no. 7, pp. 1529–1538, 2010.
[157]  S. Clavagnier, A. Falchier, and H. Kennedy, “Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness,” Cognitive, Affective and Behavioral Neuroscience, vol. 4, no. 2, pp. 117–126, 2004.
[158]  A. L. Beer, T. Plank, and M. W. Greenlee, “Diffusion tensor imaging shows white matter tracts between human auditory and visual cortex,” Experimental Brain Research, vol. 213, no. 2-3, pp. 299–308, 2011.
[159]  J. Driver and T. Noesselt, “Multisensory interplay reveals crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments,” Neuron, vol. 57, no. 1, pp. 11–23, 2008.
[160]  J. W. Lewis and D. C. Van Essen, “Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey,” Journal of Comparative Neurology, vol. 428, no. 1, pp. 112–137, 2000.
[161]  M. S. Beauchamp, S. Pasalar, and T. Ro, “Neural substrates of reliability-weighted visual-tactile multisensory integration,” Frontiers in Systems Neuroscience, vol. 4, article 25, 2010.
[162]  G. A. Calvert, P. C. Hansen, S. D. Iversen, and M. J. Brammer, “Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect,” NeuroImage, vol. 14, no. 2, pp. 427–438, 2001.
[163]  J. F. Smiley and A. Falchier, “Multisensory connections of monkey auditory cerebral cortex,” Hearing Research, vol. 258, no. 1-2, pp. 37–46, 2009.
[164]  T. Noesselt, J. W. Rieger, M. A. Schoenfeld et al., “Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices,” Journal of Neuroscience, vol. 27, no. 42, pp. 11431–11441, 2007.
[165]  S. Werner and U. Noppeney, “Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization,” Journal of Neuroscience, vol. 30, no. 7, pp. 2662–2675, 2010.
[166]  T. Sugihara, M. D. Diltz, B. B. Averbeck, and L. M. Romanski, “Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex,” Journal of Neuroscience, vol. 26, no. 43, pp. 11138–11147, 2006.
[167]  L. M. Romanski, “Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex,” Cerebral Cortex, vol. 17, supplement, pp. i61–69, 2007.
[168]  K. S. Rockland and H. Ojima, “Multisensory convergence in calcarine visual areas in macaque monkey,” International Journal of Psychophysiology, vol. 50, no. 1-2, pp. 19–26, 2003.
[169]  M. E. Laramée, T. Kurotani, K. S. Rockland, G. Bronchti, and D. Boire, “Indirect pathway between the primary auditory and visual cortices through layer V pyramidal neurons in V2L in mouse and the effects of bilateral enucleation,” European Journal of Neuroscience, vol. 34, no. 1, pp. 65–78, 2011.
[170]  J. D. Schmahmann and D. N. Pandya, “The complex history of the fronto-occipital fasciculus,” Journal of the History of the Neurosciences, vol. 16, no. 4, pp. 362–377, 2007.
[171]  J. D. Schmahmann, D. N. Pandya, R. Wang et al., “Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography,” Brain, vol. 130, no. 3, pp. 630–653, 2007.
[172]  H. E. M. Den Ouden, K. J. Friston, N. D. Daw, A. R. McIntosh, and K. E. Stephan, “A dual role for prediction error in associative learning,” Cerebral Cortex, vol. 19, no. 5, pp. 1175–1185, 2009.
[173]  M. A. Eckert, N. V. Kamdar, C. E. Chang, C. F. Beckmann, M. D. Greicius, and V. Menon, “A cross-modal system linking primary auditory and visual cortices: evidence from intrinsic fMRI connectivity analysis,” Human Brain Mapping, vol. 29, no. 7, pp. 848–857, 2008.
[174]  C. Klinge, F. Eippert, B. R?der, and C. Büchel, “Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind,” Journal of Neuroscience, vol. 30, no. 38, pp. 12798–12805, 2010.
[175]  G. F. Wittenberg, K. J. Werhahn, E. M. Wassermann, P. Herscovitch, and L. G. Cohen, “Functional connectivity between somatosensory and visual cortex in early blind humans,” European Journal of Neuroscience, vol. 20, no. 7, pp. 1923–1927, 2004.
[176]  M. Ptito, A. Fumal, A. M. De Noordhout, J. Schoenen, A. Gjedde, and R. Kupers, “TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers,” Experimental Brain Research, vol. 184, no. 2, pp. 193–200, 2008.
[177]  L. A. de la Mothe, S. Blumell, Y. Kajikawa, and T. A. Hackett, “Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions,” Anatomical Record, vol. 295, no. 5, pp. 822–836, 2012.
[178]  M. Ptito, J.-F. Giguère, D. Boire, D. O. Frost, and C. Casanova, “When the auditory cortex turns visual,” Progress in Brain Research, vol. 134, pp. 447–458, 2001.
[179]  M. Ptito and R. Kupers, “Cross-modal plasticity in early blindness,” Journal of Integrative Neuroscience, vol. 4, no. 4, pp. 479–488, 2005.
[180]  E. Macaluso, C. D. Frith, and J. Driver, “Modulation of human visual cortex by crossmodal spatial attention,” Science, vol. 289, no. 5482, pp. 1206–1208, 2000.
[181]  S. Facchini and S. M. Aglioti, “Short term light deprivation increases tactile spatial acuity in humans,” Neurology, vol. 60, no. 12, pp. 1998–1999, 2003.
[182]  B. Boroojerdi, K. O. Bushara, B. Corwell et al., “Enhanced excitability of the human visual cortex induced by short-term light deprivation,” Cerebral Cortex, vol. 10, no. 5, pp. 529–534, 2000.
[183]  L. B. Merabet, R. Hamilton, G. Schlaug et al., “Rapid and reversible recruitment of early visual cortex for touch,” PLoS ONE, vol. 3, no. 8, Article ID e3046, 2008.
[184]  A. Pascual-Leone and R. Hamilton, “The metamodal organization of the brain,” Progress in Brain Research, vol. 134, pp. 427–445, 2001.
[185]  J. Lewald, “More accurate sound localization induced by short-term light deprivation,” Neuropsychologia, vol. 45, no. 6, pp. 1215–1222, 2007.
[186]  A. Amedi, N. Raz, H. Azulay, R. Malach, and E. Zohary, “Cortical activity during tactile exploration of objects in blind and sighted humans,” Restorative Neurology and Neuroscience, vol. 28, no. 2, pp. 143–156, 2010.
[187]  J. N. Lucan, J. J. Foxe, M. Gomez-Ramirez, K. Sathian, and S. Molholm, “Tactile shape discrimination recruits human lateral occipital complex during early perceptual processing,” Human Brain Mapping, vol. 31, no. 11, pp. 1813–1821, 2010.
[188]  A. F. Rossi, N. P. Bichot, R. Desimone, and L. G. Ungerleider, “Top-down attentional deficits in Macaques with lesions of lateral prefrontal cortex,” Journal of Neuroscience, vol. 27, no. 42, pp. 11306–11314, 2007.
[189]  S. R. Friedman-Hill, L. C. Robertson, R. Desimone, and L. G. Ungerleider, “Posterior parietal cortex and the filtering of distractors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4263–4268, 2003.
[190]  M. Rosanova, A. Casali, V. Bellina, F. Resta, M. Mariotti, and M. Massimini, “Natural frequencies of human corticothalamic circuits,” Journal of Neuroscience, vol. 29, no. 24, pp. 7679–7685, 2009.
[191]  K. McAlonan, J. Cavanaugh, and R. H. Wurtz, “Guarding the gateway to cortex with attention in visual thalamus,” Nature, vol. 456, no. 7220, pp. 391–394, 2008.
[192]  I. Melzer, E. Damry, A. Landau, and R. Yagev, “The influence of an auditory-memory attention-demanding task on postural control in blind persons,” Clinical Biomechanics, vol. 26, no. 4, pp. 358–362, 2011.
[193]  H. Burton, R. J. Sinclair, and S. Dixit, “Working memory for vibrotactile frequencies: comparison of cortical activity in blind and sighted individuals,” Human Brain Mapping, vol. 31, no. 11, pp. 1686–1701, 2010.
[194]  A. Garg, D. Schwartz, and A. A. Stevens, “Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans,” Neuropsychologia, vol. 45, no. 10, pp. 2307–2321, 2007.
[195]  O. Després, V. Candas, and A. Dufour, “Spatial auditory compensation in early-blind humans: involvement of eye movements and/or attention orienting?” Neuropsychologia, vol. 43, no. 13, pp. 1955–1962, 2005.
[196]  A. H. Neuhaus, C. Urbanek, C. Opgen-Rhein, et al., “Event-related potentials associated with Attention Network Test,” International Hournal of Psychophysiology, vol. 76, no. 2, pp. 72–79, 2010.
[197]  A. Zani and A. M. Proverbio, “Is that a belt or a snake? Object attentional selection affects the early stages of visual sensory processing,” Behavioral and Brain Functions, vol. 8, article 6, 2012.
[198]  M. Stokes, R. Thompson, R. Cusack, and J. Duncan, “Top-down activation of shape-specific population codes in visual cortex during mental imagery,” Journal of Neuroscience, vol. 29, no. 5, pp. 1565–1572, 2009.
[199]  M. Stokes, A. Saraiva, G. Rohenkohl, and A. C. Nobre, “Imagery for shapes activates position-invariant representations in human visual cortex,” NeuroImage, vol. 56, no. 3, pp. 1540–1545, 2011.
[200]  A. G. De Volder, H. Toyama, Y. Kimura et al., “Auditory triggered mental imagery of shape involves visual association areas in early blind humans,” NeuroImage, vol. 14, no. 1 I, pp. 129–139, 2001.
[201]  S. D. Slotnick, W. L. Thompson, and S. M. Kosslyn, “Visual mental imagery induces retinotopically organized activation of early visual areas,” Cerebral Cortex, vol. 15, no. 10, pp. 1570–1583, 2005.
[202]  A. Vanlierde, A. G. De Volder, M. Wanet-Defalque, and C. Veraart, “Occipito-parietal cortex activation during visuo-spatial imagery in early blind humans,” NeuroImage, vol. 19, no. 3, pp. 698–709, 2003.
[203]  E. Mellet, N. Tzourio, F. Crivello, M. Joliot, M. Denis, and B. Mazoyer, “Functional anatomy of spatial mental imagery generated from verbal instructions,” Journal of Neuroscience, vol. 16, no. 20, pp. 6504–6512, 1996.
[204]  R. B. H. Tootell, N. Hadjikhani, E. K. Hall et al., “The retinotopy of visual spatial attention,” Neuron, vol. 21, no. 6, pp. 1409–1422, 1998.
[205]  J. B. Hopfinger, M. H. Buonocore, and G. R. Mangun, “The neural mechanisms of top-down attentional control,” Nature Neuroscience, vol. 3, no. 3, pp. 284–291, 2000.
[206]  H. Zhou and R. Desimone, “Feature-based attention in the frontal eye field and area V4 during visual search,” Neuron, vol. 70, no. 6, pp. 1205–1217, 2011.
[207]  A. D. Cate, T. J. Herron, E. W. Yund et al., “Auditory attention activates peripheral visual cortex,” PLoS ONE, vol. 4, no. 2, article e4645, 2009.
[208]  N. Kanwisher and E. Wojciulik, “Visual attention: insights from brain imaging,” Nature Reviews Neuroscience, vol. 1, no. 2, pp. 91–100, 2000.
[209]  C.-T. Wu, D. H. Weissman, K. C. Roberts, and M. G. Woldorff, “The neural circuitry underlying the executive control of auditory spatial attention,” Brain Research, vol. 1134, no. 1, pp. 187–198, 2007.
[210]  D. N. Saito, K. Yoshimura, T. Kochiyama, T. Okada, M. Honda, and N. Sadato, “Cross-modal binding and activated attentional networks during audio-visual speech integration: a functional MRI study,” Cerebral Cortex, vol. 15, no. 11, pp. 1750–1760, 2005.
[211]  A. Degerman, T. Rinne, J. Salmi, O. Salonen, and K. Alho, “Selective attention to sound location or pitch studied with fMRI,” Brain Research, vol. 1077, no. 1, pp. 123–134, 2006.
[212]  C. E. Wakefield, J. Homewood, and A. J. Taylor, “Cognitive compensations for blindness in children: an investigation using odour naming,” Perception, vol. 33, no. 4, pp. 429–442, 2004.
[213]  Q. Chen, M. Zhang, and X. Zhou, “Spatial and nonspatial peripheral auditory processing in congenitally blind people,” NeuroReport, vol. 17, no. 13, pp. 1449–1452, 2006.
[214]  B. Forster, A. F. Eardley, and M. Eimer, “Altered tactile spatial attention in the early blind,” Brain Research, vol. 1131, no. 1, pp. 149–154, 2007.
[215]  B. R?der, U. M. Kr?mer, and K. Lange, “Congenitally blind humans use different stimulus selection strategies in hearing: an ERP study of spatial and temporal attention,” Restorative Neurology and Neuroscience, vol. 25, no. 3-4, pp. 311–322, 2007.
[216]  K. E. Weaver and A. A. Stevens, “Attention and sensory interactions within the occipital cortex in the early blind: an fMRI study,” Journal of Cognitive Neuroscience, vol. 19, no. 2, pp. 315–330, 2007.
[217]  H. Burton, “Visual cortex activity in early and late blind people,” Journal of Neuroscience, vol. 23, no. 10, pp. 4005–4011, 2003.
[218]  A. P. Saygin and M. I. Sereno, “Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex,” Cerebral Cortex, vol. 18, no. 9, pp. 2158–2168, 2008.
[219]  F. Moradi, G. T. Bura?as, and R. B. Buxton, “Attention strongly increases oxygen metabolic response to stimulus in primary visual cortex,” NeuroImage, vol. 59, no. 1, pp. 601–607, 2012.
[220]  J. A. Brefczynski and E. A. DeYoe, “A physiological correlate of the “spotlight” of visual attention,” Nature Neuroscience, vol. 2, no. 4, pp. 370–374, 1999.
[221]  G. Deshpande, S. LaConte, G. A. James, S. Peltier, and X. Hu, “Multivariate granger causality analysis of fMRI data,” Human Brain Mapping, vol. 30, no. 4, pp. 1361–1373, 2009.
[222]  S. Peltier, R. Stilla, E. Mariola, S. LaConte, X. Hu, and K. Sathian, “Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception,” Neuropsychologia, vol. 45, no. 3, pp. 476–483, 2007.
[223]  G. Deshpande, X. Hu, S. Lacey, R. Stilla, and K. Sathian, “Object familiarity modulates effective connectivity during haptic shape perception,” NeuroImage, vol. 49, no. 3, pp. 1991–2000, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133