Mild Cognitive Impairment in Parkinson’s Disease (PD-MCI) is common and may be associated with accelerated progression to dementia. Considering the importance of this emerging entity, new diagnostic criteria have recently been proposed. Early recognition and accurate classification of PD-MCI could offer opportunities for novel therapeutic interventions. This review discusses current definitions for PD-MCI, the screening tools used, the pattern of cognitive deficits observed, and the predictors of cognitive decline and transition to Parkinson’s Disease Dementia. Emerging biomarkers, which may aid diagnosis, are also explored and the role of novel treatment options is considered. 1. Introduction Idiopathic Parkinson’s Disease (PD) is a progressive neurodegenerative disorder typically characterised by its motor features: bradykinesia, tremor, rigidity, and postural instability. However, it has become increasingly apparent that nonmotor features such as cognitive impairment, constipation, bladder dysfunction, sleep disorders, depression, anxiety, and psychosis are also significant [1]. Indeed, these symptoms, which are often poorly recognised and treated, can dominate in advanced PD accounting for significant disability, impaired quality of life, and reduced life expectancy [1, 2]. Cognitive impairment is particularly prevalent in PD and varies from mild deficits through to severe dementia [3]. Usually, dementia is limited to the advanced stages of disease, but it affects over 80% of those with 20 years of disease [4]. By contrast, subtle cognitive impairment is common in early disease and one study has reported that over a third of patients have deficits at the time of their diagnosis [5]. Importantly, even these subtle impairments impact on quality of life [6], exacerbate caregiver distress [7], and increase the risk of nursing home placement [8]. These impairments are likely to herald the progression to dementia [9, 10] and thus the early recognition of cognitive impairment could offer a window for novel therapeutic interventions, aiming to alter the course of this natural history [11]. 2. Defining Mild Cognitive Impairment In nonPD populations, Mild Cognitive Impairment (MCI) describes an intermediate stage between normal cognitive function and dementia [11], where an individual has deficits in at least one cognitive domain [12]. Diagnostic criteria have been proposed by Petersen [13], wherein MCI is characterised by a deficit of at least 1.5 standard deviations (SD) below that expected for an individual’s age and education level. Unlike the presence of
References
[1]
K. R. Chaudhuri, D. G. Healy, and A. H. V. Schapira, “Non-motor symptoms of Parkinson's disease: diagnosis and management,” Lancet Neurology, vol. 5, no. 3, pp. 235–245, 2006.
[2]
S. L. Naismith, I. B. Hickie, and S. J. G. Lewis, “The role of mild depression in sleep disturbance and quality of life in Parkinson's disease,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 22, no. 4, pp. 384–389, 2010.
[3]
J. N. Caviness, E. Driver-Dunckley, D. J. Connor et al., “Defining mild cognitive impairment in Parkinson's disease,” Movement Disorders, vol. 22, no. 9, pp. 1272–1277, 2007.
[4]
M. A. Hely, W. G. J. Reid, M. A. Adena, G. M. Halliday, and J. G. L. Morris, “The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years,” Movement Disorders, vol. 23, no. 6, pp. 837–844, 2008.
[5]
T. Foltynie, C. E. G. Brayne, T. W. Robbins, and R. A. Barker, “The cognitive ability of an incident cohort of Parkinson's patients in the UK. The CamPaIGN study,” Brain, vol. 127, no. 3, pp. 550–560, 2004.
[6]
A. Schrag, M. Jahanshahi, and N. Quinn, “What contributes to quality of life in patients with Parkinson's disease?” Journal of Neurology Neurosurgery and Psychiatry, vol. 69, no. 3, pp. 308–312, 2000.
[7]
D. Aarsland, J. P. Larsen, K. Karlsen, N. G. Lim, and E. Tandberg, “Mental symptoms in Parkinson's disease are important contributors to caregiver distress,” International Journal of Geriatric Psychiatry, vol. 14, pp. 866–874, 1999.
[8]
D. Aarsland, J. P. Larsen, E. Tandberg, and K. Laake, “Predictors of nursing home placement in Parkinson's disease: a population-based, prospective study,” Journal of the American Geriatrics Society, vol. 48, no. 8, pp. 938–942, 2000.
[9]
C. H. Williams-Gray, T. Foltynie, C. E. G. Brayne, T. W. Robbins, and R. A. Barker, “Evolution of cognitive dysfunction in an incident Parkinson's disease cohort,” Brain, vol. 130, no. 7, pp. 1787–1798, 2007.
[10]
C. C. Janvin, J. P. Larsen, D. Aarsland, and K. Hugdahl, “Subtypes of mild cognitive impairment in Parkinson's disease: progression to dementia,” Movement Disorders, vol. 21, no. 9, pp. 1343–1349, 2006.
[11]
R. C. Petersen, R. Doody, A. Kurz et al., “Current concepts in mild cognitive impairment,” Archives of Neurology, vol. 58, no. 12, pp. 1985–1992, 2001.
[12]
D. S. Knopman, B. F. Boeve, and R. C. Petersen, “Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia,” Mayo Clinic Proceedings, vol. 78, no. 10, pp. 1290–1308, 2003.
[13]
R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” Journal of Internal Medicine, vol. 256, no. 3, pp. 183–194, 2004.
[14]
H. H. Fernandez, G. P. Crucian, M. S. Okun, C. C. Price, and D. Bowers, “Mild cognitive impairment in Parkinson's disease: the challenge and the promise,” Neuropsychiatric Disease and Treatment, vol. 1, no. 1, pp. 37–50, 2005.
[15]
I. Litvan, D. Aarsland, C. H. Adler et al., “MDS task force on mild cognitive impairment in Parkinson's disease: critical review of PD-MCI,” Movement Disorders, vol. 26, no. 10, pp. 1814–1824, 2011.
[16]
I. Litvan, J. G. Goldman, A. I. Tr?ster et al., “Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines,” Movement Disorders, vol. 27, no. 3, pp. 349–356, 2012.
[17]
S. L. Naismith and S. J. G. Lewis, “‘DASH’ symptoms in patients with Parkinson's disease: red flags for early cognitive decline,” Journal of Clinical Neuroscience, vol. 18, no. 3, pp. 352–355, 2011.
[18]
S. L. Naismith, M. Pereira, J. M. Shine, and S. J. G. Lewis, “How well do caregivers detect mild cognitive change in Parkinson's disease?” Movement Disorders, vol. 26, no. 1, pp. 161–164, 2011.
[19]
E. Mamikonyan, P. J. Moberg, A. Siderowf et al., “Mild cognitive impairment is common in Parkinson's disease patients with normal Mini-Mental State Examination (MMSE) scores,” Parkinsonism and Related Disorders, vol. 15, no. 3, pp. 226–231, 2009.
[20]
D. Muslimovi?, B. Post, J. D. Speelman, and B. Schmand, “Cognitive profile of patients with newly diagnosed Parkinson disease,” Neurology, vol. 65, no. 8, pp. 1239–1245, 2005.
[21]
A. McKinlay, R. C. Grace, J. C. Dalrymple-Alford, and D. Roger, “Cognitive characteristics associated with mild cognitive impairment in parkinson's disease,” Dementia and Geriatric Cognitive Disorders, vol. 28, no. 2, pp. 121–129, 2009.
[22]
D. Verbaan, J. Marinus, M. Visser et al., “Cognitive impairment in Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 11, pp. 1182–1187, 2007.
[23]
G. M. A. S. Tedrus, L. C. Fonseca, G. H. Letro, A. S. Bossoni, and A. B. Samara, “Dementia and mild cognitive impairment in patients with Parkinson's disease,” Arquivos de Neuro-Psiquiatria, vol. 67, no. 2B, pp. 423–427, 2009.
[24]
S. J. G. Lewis, T. Foltynie, A. D. Blackwell, T. W. Bobbins, A. M. Owen, and R. A. Barker, “Heterogeneity of Parkinson's disease in the early clinical stages using a data driven approach,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 3, pp. 343–348, 2005.
[25]
J. S. A. M. Reijnders, U. Ehrt, R. Lousberg, D. Aarsland, and A. F. G. Leentjens, “The association between motor subtypes and psychopathology in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 15, no. 5, pp. 379–382, 2009.
[26]
C. Janvin, D. Aarsland, J. P. Larsen, and K. Hugdahl, “Neuropsychological profile of patients with Parkinson's disease without dementia,” Dementia and Geriatric Cognitive Disorders, vol. 15, no. 3, pp. 126–131, 2003.
[27]
J.-F. Gagnon, M. Vendette, R. B. Postuma et al., “Mild cognitive impairment in rapid eye movement sleep behavior disorder and Parkinson's disease,” Annals of Neurology, vol. 66, no. 1, pp. 39–47, 2009.
[28]
D. Muslimovi?, B. Schmand, J. D. Speelman, and R. J. de Haan, “Course of cognitive decline in Parkinson's disease: a meta-analysis,” Journal of the International Neuropsychological Society, vol. 13, no. 6, pp. 920–932, 2007.
[29]
C. C. Janvin, D. Aarsland, and J. P. Larsen, “Cognitive predictors of dementia in Parkinson's disease: a community-based, 4-year longitudinal study,” Journal of Geriatric Psychiatry and Neurology, vol. 18, no. 3, pp. 149–154, 2005.
[30]
D. Aarsland, J. T. Kval?y, K. Andersen et al., “The effect of age of onset of PD on risk of dementia,” Journal of Neurology, vol. 254, no. 1, pp. 38–45, 2007.
[31]
H. M. Lachman, D. F. Papolos, T. Saito, Y.-M. Yu, C. L. Szumlanski, and R. M. Weinshilboum, “Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders,” Pharmacogenetics, vol. 6, no. 3, pp. 243–250, 1996.
[32]
T. Foltynie, T. E. Goldberg, S. G. J. Lewis et al., “Planning ability in Parkinson's disease is influenced by the COMT val158met polymorphism,” Movement Disorders, vol. 19, no. 8, pp. 885–891, 2004.
[33]
C. H. Williams-Gray, A. Hampshire, T. W. Robbins, A. M. Owen, and R. A. Barker, “Catechol O-methyltransferase val158met genotype influences frontoparietal activity during planning in patients with parkinson's disease,” Journal of Neuroscience, vol. 27, no. 18, pp. 4832–4838, 2007.
[34]
C. H. Williams-Gray, A. Hampshire, R. A. Barker, and A. M. Owen, “Attentional control in Parkinson's disease is dependent on COMT val158met genotype,” Brain, vol. 131, no. 2, pp. 397–408, 2008.
[35]
C. H. Williams-Gray, J. R. Evans, A. Goris et al., “The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort,” Brain, vol. 132, no. 11, pp. 2958–2969, 2009.
[36]
A. Goris, C. H. Williams-Gray, G. R. Clark et al., “Tau and α-synuclein in susceptibility to, and dementia in, Parkinson's disease,” Annals of Neurology, vol. 62, no. 2, pp. 145–153, 2007.
[37]
N. Setó-Salvia, J. Clarimón, J. Pagonabarraga et al., “Dementia risk in parkinson disease: disentangling the role of MAPT Haplotypes,” Archives of Neurology, vol. 68, no. 3, pp. 359–364, 2011.
[38]
M. K. Beyer, C. C. Janvin, J. P. Larsen, and D. Aarsland, “A magnetic resonance imaging study of patients with Parkinson's disease with mild cognitive impairment and dementia using voxel-based morphometry,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 3, pp. 254–259, 2007.
[39]
R. Camicioli, M. M. Moore, A. Kinney, E. Corbridge, K. Glassberg, and J. A. Kaye, “Parkinson's disease is associated with hippocampal atrophy,” Movement Disorders, vol. 18, no. 7, pp. 784–790, 2003.
[40]
B. Ramírez-Ruiz, M. J. Martí, E. Tolosa et al., “Longitudinal evaluation of cerebral morphological changes in Parkinson's disease with and without dementia,” Journal of Neurology, vol. 252, no. 11, pp. 1345–1352, 2005.
[41]
D. Weintraub, J. Doshi, D. Koka et al., “Neurodegeneration across stages of cognitive decline in Parkinson disease,” Archives of Neurology, vol. 68, no. 12, pp. 1562–1568, 2011.
[42]
A. Brück, T. Kurki, V. Kaasinen, T. Vahlberg, and J. O. Rinne, “Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson's disease is related to cognitive impairment,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 10, pp. 1467–1469, 2004.
[43]
T. O. Dalaker, R. Zivadinov, J. P. Larsen et al., “Gray matter correlations of cognition in incident Parkinson's disease,” Movement Disorders, vol. 25, no. 5, pp. 629–633, 2010.
[44]
C. Huang, P. Mattis, K. Perrine, N. Brown, V. Dhawan, and D. Eidelberg, “Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease,” Neurology, vol. 70, no. 16, part 2, pp. 1470–1477, 2008.
[45]
S. J. G. Lewis, J. M. Shine, S. Duffy, G. Halliday, and S. L. Naismith, “Anterior cingulate integrity: executive and neuropsychiatric features in Parkinson’s disease,” Movement Disorders, vol. 27, no. 10, pp. 1262–1267, 2012.
[46]
M. T. M. Hu, S. D. Taylor-Robinson, K. R. Chaudhuri et al., “Cortical dysfunction in non-demented Parkinson's disease patients. A combined 31P-MRS and 18FDG-PET study,” Brain, vol. 123, no. 2, pp. 340–352, 2000.
[47]
R. M. Camicioli, J. R. Korzan, S. L. Foster et al., “Posterior cingulate metabolic changes occur in Parkinson's disease patients without dementia,” Neuroscience Letters, vol. 354, no. 3, pp. 177–180, 2004.
[48]
J. O. Rinne, R. Portin, H. Ruottinen et al., “Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study,” Archives of Neurology, vol. 57, no. 4, pp. 470–475, 2000.
[49]
S. J. G. Lewis, A. Dove, T. W. Robbins, R. A. Barker, and A. M. Owen, “Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry,” Journal of Neuroscience, vol. 23, no. 15, pp. 6351–6356, 2003.
[50]
L. C. Fonseca, G. M. A. S. Tedrus, G. H. Letro, and A. S. Bossoni, “Dementia, mild cognitive impairment and quantitative EEG in patients with Parkinson's disease,” Clinical EEG and Neuroscience, vol. 40, no. 3, pp. 168–172, 2009.
[51]
S. Kamei, A. Morita, K. Serizawa, T. Mizutani, and K. Hirayanagi, “Quantitative EEG analysis of executive dysfunction in Parkinson disease,” Journal of Clinical Neurophysiology, vol. 27, no. 3, pp. 193–197, 2010.
[52]
A. Siderowf, S. X. Xie, H. Hurtig et al., “CSF amyloid β 1-42 predicts cognitive decline in Parkinson disease,” Neurology, vol. 75, no. 12, pp. 1055–1061, 2010.
[53]
G. Alves, K. Br?nnick, D. Aarsland et al., “CSF amyloid-β and tau proteins, and cognitive performance, in early and untreated Parkinson's disease: the Norwegian ParkWest study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 10, pp. 1080–1086, 2010.
[54]
M. Noguchi, M. Yoshita, Y. Matsumoto, K. Ono, K. Iwasa, and M. Yamada, “Decreased β-amyloid peptide42 in cerebrospinal fluid of patients with progressive supranuclear palsy and corticobasal degeneration,” Journal of the Neurological Sciences, vol. 237, no. 1-2, pp. 61–65, 2005.
[55]
S. N. Gomperts, D. M. Rentz, E. Moran et al., “Imaging amyloid deposition in lewy body diseases,” Neurology, vol. 71, no. 12, pp. 903–910, 2008.
[56]
W. J. Schulz-Schaeffer, “The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia,” Acta Neuropathologica, vol. 120, no. 2, pp. 131–143, 2010.
[57]
J. Zhang, “Proteomics of human cerebrospinal fluid—the good, the bad, and the ugly,” Proteomics—Clinical Applications, vol. 1, no. 8, pp. 805–819, 2007.
[58]
I. Leroi, J. Brandt, S. G. Reich et al., “Randomized placebo-controlled trial of donepezil in cognitive impairment in Parkinson's disease,” International Journal of Geriatric Psychiatry, vol. 19, no. 1, pp. 1–8, 2004.
[59]
M. Emre, D. Aarsland, A. Albanese et al., “Rivastigmine for dementia associated with Parkinson's disease,” The New England Journal of Medicine, vol. 351, no. 24, pp. 2509–2518, 2004.
[60]
I. Maidment, C. Fox, and M. Boustani, “Cholinesterase inhibitors for Parkinson's disease dementia,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD004747, 2006.
[61]
A. C. Almaraz, E. D. Driver-Dunckley, B. K. Woodruff et al., “Efficacy of rivastigmine for cognitive symptoms in Parkinson disease with dementia,” The Neurologist, vol. 15, no. 4, pp. 234–237, 2009.
[62]
M. Rolinski, C. Fox, I. Maidment, and R. McShane, “Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson's disease dementia and cognitive impairment in Parkinson's disease,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD006504, 2012.
[63]
H. A. Hanagasi, H. Gurvit, P. Unsalan et al., “The effects of rasagiline on cognitive deficits in Parkinson's disease patients without dementia: a randomized, double-blind, placebo-controlled, multicenter study,” Movement Disorders, vol. 26, no. 10, pp. 1851–1858, 2011.
[64]
L. Mowszowski, J. Batchelor, and S. L. Naismith, “Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique?” International Psychogeriatrics, vol. 22, no. 4, pp. 537–548, 2010.
[65]
A. P. París, H. G. Saleta, M. de la Cruz Crespo Maraver et al., “Blind randomized controlled study of the efficacy of cognitive training in Parkinson's disease,” Movement Disorders, vol. 26, no. 7, pp. 1251–1258, 2011.
[66]
C. Nombela, P. J. Bustillo, P. F. Castel, L. Sanchez, V. Medina, and M. T. Herrero, “Cognitive rehabilitation in Parkinson’s disease: evidence from neuroimaging,” Frontiers in Neurology, vol. 2, no. 82, 2011.
[67]
D. Aarsland, K. Bronnick, J. P. Larsen, O. B. Tysnes, and G. Alves, “Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study,” Neurology, vol. 72, pp. 1121–1126, 2009.