Endogenous carbon monoxide (CO) is produced by heme oxygenase-1 (HO)-1 which mediates the degradation of heme into CO, iron, and biliverdin. Also, CO ameliorates the human inflammatory bowel diseases and ulcerative colitis. However, the mechanism for the effect of CO on the inflammatory bowel disease has not yet been known. In this study, we showed that CO significantly increases survival percentage, body weight, colon length as well as histologic parameters in DSS-treated mice. In addition, CO inhalation significantly decreased DSS induced pro-inflammatory cytokines by inhibition of GSK-3β in mice model. To support the in vivo observation, TNF-α, iNOS and IL-10 after CO and LiCl treatment were measured in mesenteric lymph node cells (MLNs) and bone marrow-derived macrophages (BMMs) from DSS treated mice. In addition, we determined that CO potentially inhibited GSK-3β activation and decreased TNF-α and iNOS expression by inhibition of NF-κB activation in LPS-stimulated U937 and MLN cells pretreated with CO. Together, our findings indicate that CO attenuates DSS-induced colitis via inhibition of GSK-3β signaling in vitro and in vivo. Importantly, this is the first report that investigated the molecular mechanisms mediated the novel effects of CO via inhibition GSK-3β in DSS-induced colitis model. 1. Introduction Inflammatory bowel diseases (IBD) are a chronic and recurrent intestinal inflammation resulting from the transmural infiltration of neutrophils, macrophages, lymphocytes, and mast cells, ultimately giving rise to mucosal disruption and ulceration [1]. Furthermore, defects in epithelial barrier function and overproduction of proinflammatory cytokines such as IL-1β, IL-6, IL-12p40, IL-23p19, TNF-α and IFN-γ lead to tissue injury in intestine [2]. Additionally, upregulation of pro-inflammatory cytokines in IBD condition is mediated by NF-κB, a transcription factor [3]. In order to develop the various models of experimental IBD, dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS) was administrated [4, 5]. This model is characterized by acute tissue inflammation in the colon and mimics the pathology of human ulcerative colitis. Endogenous carbon monoxide (CO) as the end product of heme oxygenase-1 (HO-1) activity has anti-inflammatory, antiapoptotic and cytoprotective properties [6]. Also, CO ameliorates active inflammation in an experimental model of chronic IBD [7, 8]. Further, CO has showen beneficial effects in ischemia/reperfusion injury [9, 10], pulmonary inflammation [11], and sepsis [12]. In case of tracheal transplantation in
References
[1]
C. Fiocchi, “Inflammatory bowel disease: etiology and pathogenesis,” Gastroenterology, vol. 115, no. 1, pp. 182–205, 1998.
[2]
R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007.
[3]
T. Lawrence, M. Bebien, G. Y. Liu, V. Nizet, and M. Karin, “IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation,” Nature, vol. 434, no. 7037, pp. 1138–1143, 2005.
[4]
I. Okayasu, S. Hatakeyama, M. Yamada, T. Ohkusa, Y. Inagaki, and R. Nakaya, “A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice,” Gastroenterology, vol. 98, no. 3, pp. 694–702, 1990.
[5]
Y. Yamada, S. Marshall, R. D. Specian, and M. B. Grisham, “A comparative analysis of two models of colitis in rats,” Gastroenterology, vol. 102, no. 5, pp. 1524–1534, 1992.
[6]
S. W. Ryter, D. Morse, and A. M. K. Choi, “Carbon monoxide and bilirubin: potential therapies for pulmonary/vascular injury and disease,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 2, pp. 175–182, 2007.
[7]
R. A. F. Hegazi, K. N. Rao, A. Mayle, A. R. Sepulveda, L. E. Otterbein, and S. E. Plevy, “Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway,” The Journal of Experimental Medicine, vol. 202, no. 12, pp. 1703–1713, 2005.
[8]
S. Z. Sheikh, R. A. Hegazi, T. Kobayashi et al., “An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis,” Journal of Immunology, vol. 186, no. 9, pp. 5506–5513, 2011.
[9]
A. Nakao, H. Toyokawa, M. Abe et al., “Heart allograft protection with low-dose carbon monoxide inhalation: effects on inflammatory mediators and alloreactive T-cell responses,” Transplantation, vol. 81, no. 2, pp. 220–230, 2006.
[10]
J. Kohmoto, A. Nakao, D. B. Stolz et al., “Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway,” American Journal of Transplantation, vol. 7, no. 10, pp. 2279–2290, 2007.
[11]
U. Goebel, M. Siepe, A. Mecklenburg et al., “Carbon monoxide inhalation reduces pulmonary inflammatory response during cardiopulmonary bypass in pigs,” Anesthesiology, vol. 108, no. 6, pp. 1025–1036, 2008.
[12]
G. Cepinskas, K. Katada, A. Bihari, and R. F. Potter, “Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 294, no. 1, pp. G184–G191, 2008.
[13]
T. Minamino, H. Christou, C.-M. Hsieh et al., “Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 15, pp. 8798–8803, 2001.
[14]
P. Sawle, R. Foresti, B. E. Mann, T. R. Johnson, C. J. Green, and R. Motterlini, “Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages,” The British Journal of Pharmacology, vol. 145, no. 6, pp. 800–810, 2005.
[15]
T. Takagi, Y. Naito, K. Uchiyama et al., “Carbon monoxide liberated from carbon monoxide-releasing molecule exerts an anti-inflammatory effect on dextran sulfate sodium-induced colitis in mice,” Digestive Diseases and Sciences, vol. 56, no. 6, pp. 1663–1671, 2011.
[16]
A. Ali, K. P. Hoeflich, and J. R. Woodgett, “Glycogen synthase kinase-3: properties, functions, and regulation,” Chemical Reviews, vol. 101, no. 8, pp. 2527–2540, 2001.
[17]
R. S. Jope and G. V. W. Johnson, “The glamour and gloom of glycogen synthase kinase-3,” Trends in Biochemical Sciences, vol. 29, no. 2, pp. 95–102, 2004.
[18]
S. Frame and P. Cohen, “GSK3 takes centre stage more than 20 years after its discovery,” The Biochemical Journal, vol. 359, no. 1, pp. 1–16, 2001.
[19]
B. J. R. Whittle, C. Varga, A. Pósa, A. Molnár, M. Collin, and C. Thiemermann, “Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3β,” British Journal of Pharmacology, vol. 147, no. 5, pp. 575–582, 2006.
[20]
J. F. Ndisang, N. Lane, and A. Jadhav, “Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes,” American Journal of Physiology: Endocrinology and Metabolism, vol. 296, no. 5, pp. E1029–E1041, 2009.
[21]
T. J. Chambers, J. M. Owens, G. Hattersley, P. S. Jat, and M. D. Noble, “Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 12, pp. 5578–5582, 1993.
[22]
V. P. Marques, G. M. Gon?alves, C. Q. Feitoza et al., “Influence of TH1/TH2 switched immune response on renal ischemia-reperfusion injury,” Nephron Experimental Nephrology, vol. 104, no. 1, pp. e48–e56, 2006.
[23]
T. S. Blackwell and J. W. Christman, “The role of nuclear factor-κB in cytokine gene regulation,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 1, pp. 3–9, 1997.
[24]
M. Martin, K. Rehani, R. S. Jope, and S. M. Michalek, “Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3,” Nature Immunology, vol. 6, no. 8, pp. 777–784, 2005.
[25]
F. Demarchi, C. Bertoli, P. Sandy, and C. Schneider, “Glycogen synthase kinase-3β regulates NF-κB1/p105 stability,” The Journal of Biological Chemistry, vol. 278, no. 41, pp. 39583–39590, 2003.
[26]
A. M. Badger, J. N. Bradbeer, B. Votta, J. C. Lee, J. L. Adams, and D. E. Griswold, “Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function,” The Journal of Pharmacology and Experimental Therapeutics, vol. 279, no. 3, pp. 1453–1461, 1996.
[27]
A. Spittler, M. Razenberger, H. Kupper et al., “Relationship between interleukin-6 plasma concentration in patients with sepsis, monocyte phenotype, monocyte phagocytic properties, and cytokine production,” Clinical Infectious Diseases, vol. 31, no. 6, pp. 1338–1342, 2000.
[28]
D. Morse, S. E. Pischke, Z. Zhou et al., “Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1,” The Journal of Biological Chemistry, vol. 278, no. 39, pp. 36993–36998, 2003.
[29]
B. A. Moore, L. E. Otterbein, A. Türler, A. M. K. Choi, and A. J. Bauer, “Inhaled carbon monoxide suppresses the development of postoperative ileus in the murine small intestine,” Gastroenterology, vol. 124, no. 2, pp. 377–391, 2003.
[30]
F. A. D. T. G. Wagener, J.-L. Da Silva, T. Farley, T. De Witte, A. Kappas, and N. G. Abraham, “Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule expression,” The Journal of Pharmacology and Experimental Therapeutics, vol. 291, no. 1, pp. 416–423, 1999.
[31]
A. Nakao, K. Kimizuka, D. B. Stolz et al., “Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury,” The American Journal of Pathology, vol. 163, no. 4, pp. 1587–1598, 2003.
[32]
J. S. Neto, A. Nakao, K. Kimizuka et al., “Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide,” American Journal of Physiology: Renal Physiology, vol. 287, no. 5, pp. F979–F989, 2004.
[33]
K. Uchiyama, Y. Naito, T. Takagi et al., “Carbon monoxide enhance colonic epithelial restitution via FGF15 derived from colonic myofibroblasts,” Biochemical and Biophysical Research Communications, vol. 391, no. 1, pp. 1122–1126, 2010.
[34]
Y. Naito, T. Takagi, K. Uchiyama, and T. Yoshikawa, “Heme oxygenase-1: a novel therapeutic target for gastrointestinal diseases,” Journal of Clinical Biochemistry and Nutrition, vol. 48, no. 2, pp. 126–133, 2011.
[35]
Y. Xia, J. Rao, A. Yao, F. Zhang, G. Li, X. Wang, et al., “Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3beta/NF-kappaB-mediated protective signaling in mice,” European Journal of Pharmacology, vol. 697, no. 1–3, pp. 117–125, 2012.
[36]
C. Platzer, E. Fritsch, T. Elsner, M. H. Lehmann, H. D. Volk, and S. Prosch, “Cyclic adenosine monophosphate-responsive elements are involved in the transcriptional activation of the human IL-10 gene in monocytic cells,” European Journal of Immunology, vol. 29, no. 10, pp. 3098–3104, 1999.
[37]
X. Hu, P. K. Paik, J. Chen et al., “IFN-γ Suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 Proteins,” Immunity, vol. 24, no. 5, pp. 563–574, 2006.
[38]
Y.-A. Song, Y.-L. Park, K.-Y. Kim et al., “Black tea extract prevents lipopolysaccharide-induced NF-κB signaling and attenuates dextran sulfate sodium-induced experimental colitis,” BMC Complementary and Alternative Medicine, vol. 11, article 91, 2011.
[39]
I. Villegas, C. La Casa, A. Orjales, and C. Alarcon de la Lastra, “Effects of dosmalfate, a new cytoprotective agent, on acute and chronic trinitrobenzene sulphonic acid-induced colitis in rats,” European Journal of Pharmacology, vol. 460, no. 2-3, pp. 209–218, 2003.
[40]
T. Takagi, Y. Naito, K. Mizushima et al., “Inhalation of carbon monoxide ameliorates TNBS-induced colitis in mice through the inhibition of TNF-α expression,” Digestive Diseases and Sciences, vol. 55, no. 10, pp. 2797–2804, 2010.
[41]
K. Sugimoto, A. Ogawa, E. Mizoguchi et al., “IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis,” The Journal of Clinical Investigation, vol. 118, no. 2, pp. 534–544, 2008.
[42]
D. J. Berg, N. Davidson, R. Kühn et al., “Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) Th1-like responses,” The Journal of Clinical Investigation, vol. 98, no. 4, pp. 1010–1020, 1996.
[43]
L. Dugo, M. Collin, D. A. Allen et al., “GSK-3β inhibitors attenuate the organ injury/dysfunction caused by endotoxemia in the rat,” Critical Care Medicine, vol. 33, no. 9, pp. 1903–1912, 2005.
[44]
P. Cohen and S. Frame, “The renaissance of GSK3,” Nature Reviews Molecular Cell Biology, vol. 2, no. 10, pp. 769–776, 2001.
[45]
C. Hofmann, N. Dunger, J. Sch?lmerich, W. Falk, and F. Obermeier, “Glycogen synthase kinase 3-β: a master regulator of toll-like receptor-mediated chronic intestinal inflammation,” Inflammatory Bowel Diseases, vol. 16, no. 11, pp. 1850–1858, 2010.