Although atypical antipsychotic drugs (APDs) have led to significant advances in the treatment of psychotic disorders, they still induce metabolic disturbances. We aimed at characterizing the metabolic consequences of a risperidone treatment and at establishing a link with noninvasive MR markers, in order to develop a tool for predicting symptoms of the metabolic syndrome. Fat deposition and liver morphometry were assessed by T1-weighted imaging. Fatty acid composition and fat accumulations in tissues were determined using MR spectroscopy with and without water suppression, respectively. Risperidone treatment induced a weight gain accompanied with metabolic disturbances such as hyperglycemic status, an increase in visceral adipose tissue (VAT), and liver fat depositions. Correlations using Methylene-Water Ratio (MWR) and Polyunsaturated Index (PUI) demonstrated a concomitant increase in the weight gain, VAT and liver fat depositions, and a decrease in the quantity of polyunsaturated fatty acids. These results were consistent with a hepatic steatosis state. We evaluated the ability of MR techniques to detect subtle metabolic disorders induced by APDs. Thus, our model and methodology offer the possibility to investigate APDs side effects in order to improve the health conditions of schizophrenic patients. 1. Introduction Antipsychotic drugs (APDs) are widely used in current psychiatric practice and are commonly classified as typical (conventional) or atypical (second generation). Atypical APDs have been introduced in clinical practice after 1990, including clozapine, olanzapine, quetiapine, and risperidone. Atypical APDs cause less extrapyramidal symptoms (tremors) than typical APDs. However, both of them produce a weight gain [1–3], which increases the risk to develop a metabolic syndrome [4] associating several disorders such as diabetes mellitus, hypertension, hyperglycemia, dyslipidemia, and abdominal fat deposition [4, 5]. The excess of visceral adipose tissue (VAT) mass is particularly correlated to the prevalence of metabolic syndrome and insulin resistance [6]. Indeed, abnormal VAT depositions lead to the storage of lipids in undesired organs such as pancreas, skeletal muscle, heart, and liver. This so-called “ectopic fat deposition” contributes to the development of metabolic syndrome [6–12]. VAT accumulation could thus represent a biomarker of metabolic disturbances, as used in clinic through the measurement of waist circumference in replacement of the body mass index [5]. Nevertheless, the susceptibility to develop a metabolic syndrome is not
References
[1]
M. de Hert, J. Detraux, R. van Winkel, W. Yu, and C. U. Correll, “Metabolic and cardiovascular adverse effects associated with antipsychotic drugs,” Nature Reviews Endocrinology, vol. 8, no. 2, pp. 114–126, 2012.
[2]
J. A. Lieberman, T. S. Stroup, J. P. McEvoy et al., “Effectiveness of antipsychotic drugs in patients with chronic schizophrenia,” The New England Journal of Medicine, vol. 353, no. 12, pp. 1209–1223, 2005.
[3]
W. W. Fleischhacker, R. D. McQuade, R. N. Marcus, D. Archibald, R. Swanink, and W. H. Carson, “A double-blind, randomized comparative study of aripiprazole and olanzapine in patients with schizophrenia,” Biological Psychiatry, vol. 65, no. 6, pp. 510–517, 2009.
[4]
C. U. Correll, J. M. Kane, and P. Manu, “Obesity and coronary risk in patients treated with second-generation antipsychotics,” European Archives of Psychiatry and Clinical Neuroscience, vol. 261, no. 6, pp. 417–423, 2011.
[5]
K. G. M. M. Alberti and P. Zimmet, “Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation,” Diabetic Medicine, vol. 23, no. 5, pp. 469–480, 2006.
[6]
N. Rasouli, B. Molavi, S. C. Elbein, and P. A. Kern, “Ectopic fat accumulation and metabolic syndrome,” Diabetes, Obesity and Metabolism, vol. 9, no. 1, pp. 1–10, 2007.
[7]
B. J. Arsenault, E. P. Beaumont, J. P. Despres, and E. Larose, “Mapping body fat distribution: a key step towards the identification of the vulnerable patient?” Annals of Medicine, vol. 44, pp. 758–772, 2011.
[8]
D. B. Carr, K. M. Utzschneider, R. L. Hull et al., “Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome,” Diabetes, vol. 53, no. 8, pp. 2087–2094, 2004.
[9]
C. S. Fox, J. M. Massaro, U. Hoffmann et al., “Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study,” Circulation, vol. 116, no. 1, pp. 39–48, 2007.
[10]
S. R. Smith, J. C. Lovejoy, F. Greenway et al., “Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity,” Metabolism, vol. 50, no. 4, pp. 425–435, 2001.
[11]
J. Tong, E. J. Boyko, K. M. Utzschneider et al., “Intra-abdominal fat accumulation predicts the development of the metabolic syndrome in non-diabetic Japanese-Americans,” Diabetologia, vol. 50, no. 6, pp. 1156–1160, 2007.
[12]
J.-P. Després and I. Lemieux, “Abdominal obesity and metabolic syndrome,” Nature, vol. 444, no. 7121, pp. 881–887, 2006.
[13]
A. S. Jackson and M. L. Pollock, “Steps towards the development of generalized equations for predicting body composition of adults,” Canadian Journal of Applied Sport Sciences, vol. 7, no. 3, pp. 189–196, 1982.
[14]
K. J. Ellis, “Human body composition: in vivo methods,” Physiological Reviews, vol. 80, no. 2, pp. 649–680, 2000.
[15]
S. Mattsson and B. J. Thomas, “Development of methods for body composition studies,” Physics in Medicine and Biology, vol. 51, no. 13, pp. R203–R228, 2006.
[16]
N. Abate, A. Garg, R. Coleman, S. M. Grundy, and R. M. Peshock, “Prediction of total subcutaneous abdominal, intraperitoneal, and retroperitoneal adipose tissue masses in men by a single axial magnetic resonance imaging slice,” American Journal of Clinical Nutrition, vol. 65, no. 2, pp. 403–408, 1997.
[17]
J. L. Lancaster, A. A. Ghiatas, A. Alyassin, R. F. Kilcoyne, E. Bonora, and R. A. DeFronzo, “Measurement of abdominal fat with T1-weighted MR images,” Journal of Magnetic Resonance Imaging, vol. 1, no. 3, pp. 363–369, 1991.
[18]
J. Kullberg, J. Brandberg, J.-E. Angelhed et al., “Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry,” British Journal of Radiology, vol. 82, no. 974, pp. 123–130, 2009.
[19]
J. Berglund, L. Johansson, H. Ahlstr?m, and J. Kullberg, “Three-point Dixon method enables whole-body water and fat imaging of obese subjects,” Magnetic Resonance in Medicine, vol. 63, no. 6, pp. 1659–1668, 2010.
[20]
H. Kvist, L. Sjostrom, and U. Tylen, “Adipose tissue volume determinations in women by computed tomography: technical considerations,” International Journal of Obesity, vol. 10, no. 1, pp. 53–67, 1986.
[21]
J. C. Seidell, C. J. G. Bakker, and K. van der Kooy, “Imaging techniques for measuring adipose-tissue distribution—a comparison between computed tomography and 1.5-T magnetic resonance,” American Journal of Clinical Nutrition, vol. 51, no. 6, pp. 953–957, 1990.
[22]
G. Brix, S. Heiland, M. E. Bellemann, T. Koch, and W. J. Lorenz, “MR imaging of fat-containing tissues: valuation of two quantitative imaging techniques in comparison with localized proton spectroscopy,” Magnetic Resonance Imaging, vol. 11, no. 7, pp. 977–991, 1993.
[23]
B. H. Goodpaster, V. A. Stenger, F. Boada et al., “Skeletal muscle lipid concentration quantified by magnetic resonance imaging,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 748–754, 2004.
[24]
F. Schick, J. Machann, K. Brechtel et al., “MRI of muscular fat,” Magnetic Resonance in Medicine, vol. 47, no. 4, pp. 720–727, 2002.
[25]
E. L. Thomas, G. Hamilton, N. Patel et al., “Hepatic triglyceride content and its relation to body adiposity: a magnetic resonance imaging and proton magnetic resonance spectroscopy study,” Gut, vol. 54, no. 1, pp. 122–127, 2005.
[26]
H. H. Hu, K. S. Nayak, and M. I. Goran, “Assessment of abdominal adipose tissue and organ fat content by magnetic resonance imaging,” Obesity Reviews, vol. 12, no. 501, pp. e504–e515, 2011.
[27]
R. Ross, B. Goodpaster, D. Kelley, and F. Boada, “Magnetic resonance imaging in human body composition research. From quantitative to qualitative tissue measurement,” Annals of the New York Academy of Sciences, vol. 904, pp. 12–17, 2000.
[28]
S. B. Reeder, I. Cruite, G. Hamilton, and C. B. Sirlin, “Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy,” Journal of Magnetic Resonance Imaging, vol. 34, no. 4, pp. 729–749, 2011.
[29]
L. Wilhelm Poll, H.-J. Wittsack, J.-A. Koch et al., “A rapid and reliable semiautomated method for measurement of total abdominal fat volumes using magnetic resonance imaging,” Magnetic Resonance Imaging, vol. 21, no. 6, pp. 631–636, 2003.
[30]
A. P. Levene, H. Kudo, M. J. Armstrong et al., “Quantifying hepatic steatosis—more than meets the eye,” Histopathology, vol. 60, no. 6, pp. 971–981, 2012.
[31]
E. Lauressergues, F. Martin, A. Helleboid et al., “Overweight induced by chronic risperidone exposure is correlated with overexpression of the SREBP-1c and FAS genes in mouse liver,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 383, no. 4, pp. 423–436, 2011.
[32]
P. A. Yushkevich, J. Piven, H. C. Hazlett et al., “User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability,” NeuroImage, vol. 31, no. 3, pp. 1116–1128, 2006.
[33]
L. S. Szczepaniak, P. Nurenberg, D. Leonard et al., “Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population,” American Journal of Physiology—Endocrinology and Metabolism, vol. 288, no. 2, pp. E462–E468, 2005.
[34]
R. Deslauriers, R. L. Somorjai, Y. Geoffrion, T. Kroft, I. C. Smith, and J. K. Saunders, “1H and 13C NMR studies of tissue from normal and diseased mice. Analysis of T1 and T2 relaxation profiles of triglycerides in liver,” NMR in Biomedicine, vol. 1, no. 1, pp. 32–43, 1988.
[35]
J. Ren, I. Dimitrov, A. D. Sherry, and C. R. Malloy, “Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla,” Journal of Lipid Research, vol. 49, no. 9, pp. 2055–2062, 2008.
[36]
N. A. Johnson, D. W. Walton, T. Sachinwalla et al., “Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders,” Hepatology, vol. 47, no. 5, pp. 1513–1523, 2008.
[37]
S. F. Kim, A. S. Huang, A. M. Snowman, C. Teuscher, and S. H. Snyder, “Antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3456–3459, 2007.
[38]
M. Rodríguez-Arias, I. Broseta, M. A. Aguilar, and J. Mi?arro, “Lack of specific effects of selective D1 and D2 dopamine antagonists vs. risperidone on morphine-induced hyperactivity,” Pharmacology Biochemistry and Behavior, vol. 66, no. 1, pp. 189–197, 2000.
[39]
J. Arnt, “Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of D-amphetamine,” European Journal of Pharmacology, vol. 283, no. 1–3, pp. 55–62, 1995.
[40]
H. E. Bays, “Adiposopathy: is “sick fat” a cardiovascular disease?” Journal of the American College of Cardiology, vol. 57, no. 25, pp. 2461–2473, 2011.
[41]
I. R. Corbin, E. E. Furth, S. Pickup, E. S. Siegelman, and E. J. Delikatny, “In vivo assessment of hepatic triglycerides in murine non-alcoholic fatty liver disease using magnetic resonance spectroscopy,” Biochimica et Biophysica Acta, vol. 1791, no. 8, pp. 757–763, 2009.
[42]
J. Araya, R. Rodrigo, L. A. Videla et al., “Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease,” Clinical Science, vol. 106, no. 6, pp. 635–643, 2004.
[43]
L. A. Videla, R. Rodrigo, J. Araya, and J. Poniachik, “Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease,” Free Radical Biology and Medicine, vol. 37, no. 9, pp. 1499–1507, 2004.
[44]
J. H. Song, K. Fujimoto, and T. Miyazawa, “Polyunsaturated (n-3) fatty acids susceptible to peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils,” Journal of Nutrition, vol. 130, no. 12, pp. 3028–3033, 2000.
[45]
J. H. Song and T. Miyazawa, “Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil,” Atherosclerosis, vol. 155, no. 1, pp. 9–18, 2001.
[46]
P. Puri, R. A. Baillie, M. M. Wiest et al., “A lipidomic analysis of nonalcoholic fatty liver disease,” Hepatology, vol. 46, no. 4, pp. 1081–1090, 2007.
[47]
C. P. F. Marinangeli and P. J. H. Jones, “Functional food ingredients as adjunctive therapies to pharmacotherapy for treating disorders of metabolic syndrome,” Annals of Medicine, vol. 42, no. 5, pp. 317–333, 2010.
[48]
A. Sahebkar, “Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome?” Biofactors, vol. 39, no. 2, pp. 197–208, 2012.