全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Scientifica  2013 

The Role of Sialic Acid-Binding Receptors (Siglecs) in the Immunomodulatory Effects of Trypanosoma cruzi Sialoglycoproteins on the Protective Immunity of the Host

DOI: 10.1155/2013/965856

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and is an important endemic infection in Latin America. Lately, it has also become a health concern in the United States and Europe. Most of the immunomodulatory mechanisms associated with this parasitic infection have been attributed to mucin-like molecules on the T. cruzi surface. Mucins are high molecular weight glycoproteins that are involved in regulating diverse cellular activities in both normal and pathological conditions. In Trypanosoma cruzi infection, the parasite-derived mucins are the main acceptors of sialic acid and it has been suggested that they play a role in various host-parasite interactions during the course of Chagas disease. Recently, we have presented evidence that sialylation of the mucins is required for the inhibitory effects on CD4+ T cells. In what follows we propose that signaling via sialic acid-binding Ig-like lectin receptors for these highly sialylated structures on host cells contributes to the arrest of cell cycle progression in the G1 phase and may allow the parasite to modulate the immune system of the host. 1. Trypanosoma cruzi Infection and the Immunopathology of Chagas Disease Chagas’ disease or American trypanosomiasis is a tropical parasitic illness affecting nearly 20 million people in the Americas [1, 2]. The disease is caused by the protozoan flagellated parasite Trypanosoma cruzi, transmitted to humans by haematophagous insects known as triatomines (Reduviidae family). The complex life cycle of T. cruzi includes epimastigote and metacyclic trypomastigote stages in the insect vector and bloodstream trypomastigote and intracellular amastigotes in the vertebrate host [3]. In the latter, the Trypanosoma cruzi infects several cell types, including monocytes, fibroblasts, endothelial cells, and muscle cells [4–9]. This capacity to invade a wide range of host cells is associated with increased tissue inflammation and evokes a strong immunological response. This host protective response results from host tissue damage due to increased infiltration of leukocytes to the inflammatory sites, producing proinflammatory mediators, including cytokines, chemokines, and nitric oxide, among other factors [10–14]. Approximately 30% of infected patients develop symptoms of the disease in their lifetime; these include cardiomyopathy, neuropathies, and dilatation of the colon or esophagus [15]. The pathogenesis of Chagas disease is controversial and distinct hypotheses have been considered, including autoimmune manifestations and parasite-driven tissue damage

References

[1]  A. L. Ribeiro, M. P. Nunes, M. M. Teixeira, and M. O. Rocha, “Diagnosis and management of Chagas disease and cardiomyopathy,” Nature Reviews Cardiology, vol. 9, pp. 576–589, 2012.
[2]  M. A. Barry, J. E. Weatherhead, P. J. Hotez, and L. Woc-Colburn, “Childhood parasitic infections endemic to the United States,” Pediatric Clinics of North America, vol. 60, pp. 471–485, 2013.
[3]  E. S. Garcia, F. A. Genta, P. de Azambuja, and G. A. Schaub, “Interactions between intestinal compounds of triatomines and Trypanosoma cruzi,” Trends in Parasitology, vol. 26, no. 10, pp. 499–505, 2010.
[4]  E. Ortega-Barria and M. E. Pereira, “Entry of Trypanosoma cruzi into eukaryotic cells,” Infectious Agents and Disease, vol. 1, no. 3, pp. 136–145, 1992.
[5]  B. A. Burleigh and A. M. Woolsey, “Cell signalling and Trypanosoma cruzi invasion,” Cellular Microbiology, vol. 4, no. 11, pp. 701–711, 2002.
[6]  W. de Souza, T. M. de Carvalho, and E. S. Barrias, “Review on Trypanosoma cruzi: host cell interaction,” International Journal of Cell Biology, vol. 2010, Article ID 295394, 18 pages, 2010.
[7]  M. C. Fernandes and N. W. Andrews, “Host cell invasion by Trypanosoma cruzi: a unique strategy that promotes persistence,” FEMS Microbiology Reviews, vol. 36, no. 3, pp. 734–747, 2012.
[8]  F. Nagajyothi, F. S. Machado, B. A. Burleigh et al., “Mechanisms of Trypanosoma cruzi persistence in Chagas disease,” Cellular Microbiology, vol. 14, no. 5, pp. 634–643, 2012.
[9]  F. Y. Maeda, C. Cortez, and N. Yoshida, “Cell signaling during Trypanosoma cruzi invasion,” Frontiers in Immunology, vol. 3, article 361, 2012.
[10]  H. B. Tanowitz, J. P. Gumprecht, D. Spurr et al., “Cytokine gene expression of endothelial cells infected with Trypanosoma cruzi,” Journal of Infectious Diseases, vol. 166, no. 3, pp. 598–603, 1992.
[11]  H. Huang, T. M. Calderon, J. W. Berman et al., “Infection of endothelial cells with Trypanosoma cruzi activates NF-κB and induces vascular adhesion molecule expression,” Infection and Immunity, vol. 67, no. 10, pp. 5434–5440, 1999.
[12]  B. Chandrasekar, P. C. Melby, D. A. Troyer, and G. L. Freeman, “Differential regulation of nitric oxide synthase isoforms in experimental acute Chagasic cardiomyopathy,” Clinical and Experimental Immunology, vol. 121, no. 1, pp. 112–119, 2000.
[13]  M. M. Teixeira, R. T. Gazzinelli, and J. S. Silva, “Chemokines, inflammation and Trypanosoma cruzi infection,” Trends in Parasitology, vol. 18, no. 6, pp. 262–265, 2002.
[14]  S. Mukherjee, H. Huang, S. B. Petkova et al., “Trypanosoma cruizi infection activates extracellular signal-regulated kinase in cultured endothelial and smooth muscle cells,” Infection and Immunity, vol. 72, no. 9, pp. 5274–5282, 2004.
[15]  A. Prata, “Clinical and epidemiological aspects of Chagas disease,” The Lancet Infectious Diseases, vol. 1, no. 2, pp. 92–100, 2001.
[16]  N. Gironès, H. Cuervo, and M. Fresno, “Trypanosoma cruzi-induced molecular mimicry and Chagas' disease,” Current Topics in Microbiology and Immunology, vol. 296, pp. 89–123, 2005.
[17]  F. R. Gutierrez, P. M. Guedes, R. T. Gazzinelli, and J. S. Silva, “The role of parasite persistence in pathogenesis of Chagas heart disease,” Parasite Immunology, vol. 31, no. 11, pp. 673–685, 2009.
[18]  E. Cunha-Neto, P. C. Teixeira, L. G. Nogueira, and J. Kalil, “Autoimmunity,” Advances in Parasitology, vol. 76, pp. 129–152, 2011.
[19]  C. R. Marinho, M. R. D'Império Lima, M. G. Grisotto, and J. M. Alvarez, “Influence of acute-phase parasite load on pathology, parasitism, and activation of the immune system at the late chronic phase of Chagas' disease,” Infection and Immunity, vol. 67, no. 1, pp. 308–318, 1999.
[20]  P. Minoprio, S. Itohara, C. Heusser, S. Tonegawa, and A. Coutinho, “Immunobiology of murine T. Cruzi infection: the predominance of parasite-nonspecific responses and the activation of TCRI T cells,” Immunological Reviews, no. 112, pp. 183–207, 1989.
[21]  A. Ouaissi, A. C. da Silva, A. G. Guevara, M. Borges, and E. Guilvard, “Trypanosoma cruzi-induced host immune system dysfunction: a rationale for parasite immunosuppressive factor(s) encoding gene targeting,” Journal of Biomedicine and Biotechnology, vol. 1, no. 1, pp. 11–17, 2001.
[22]  A. M. Acosta and C. A. Santos-Buch, “Autoimmune myocarditis induced by Trypanosoma cruzi,” Circulation, vol. 71, no. 6, pp. 1255–1261, 1985.
[23]  F. Kierszenbaum, “Chagas' disease and the autoimmunity hypothesis,” Clinical Microbiology Reviews, vol. 12, no. 2, pp. 210–223, 1999.
[24]  D. M. Engman and J. S. Leon, “Pathogenesis of Chagas heart disease: role of autoimmunity,” Acta Tropica, vol. 81, no. 2, pp. 123–132, 2002.
[25]  L. Klein, M. Hinterberger, G. Wirnsberger, and B. Kyewski, “Antigen presentation in the thymus for positive selection and central tolerance induction,” Nature Reviews Immunology, vol. 9, no. 12, pp. 833–844, 2009.
[26]  A. Basten and P. A. Silveira, “B-cell tolerance: mechanisms and implications,” Current Opinion in Immunology, vol. 22, no. 5, pp. 566–574, 2010.
[27]  K. Pieper, B. Grimbacher, and H. Eibel, “B-cell biology and development,” Journal of Allergy and Clinical Immunology, vol. 131, no. 4, pp. 959–971, 2013.
[28]  A. A. Freitas and B. Rocha, “Population biology of lymphocytes: the flight for survival,” Annual Review of Immunology, vol. 18, pp. 83–111, 2000.
[29]  R. A. Willis, J. W. Kappler, and P. C. Marrack, “CD8 T cell competition for dendritic cells in vivo is an early event in activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 12063–12068, 2006.
[30]  C. Montaudouin, M. Anson, Y. Hao et al., “Quorum sensing contributes to activated IgM-secreting B cell homeostasis,” Journal of Immunology, vol. 190, no. 1, pp. 106–114, 2013.
[31]  F. Y. Liew, M. T. Scott, D. S. Liu, and S. L. Croft, “Suppressive substance produced by T cells from mice chronically infected with Trypanosoma cruzi. I. Preferential inhibition of the induction of delayed-type hypersensitivity,” Journal of Immunology, vol. 139, no. 7, pp. 2452–2457, 1987.
[32]  F. Kierszenbaum, J. L. de Diego, M. Fresno, and M. B. Sztein, “Inhibitory effects of the Trypanosoma cruzi membrane glycoprotein AGC10 on the expression of IL-2 receptor chains and secretion of cytokines by subpopulations of activated human T lymphocytes,” European Journal of Immunology, vol. 29, pp. 1684–1691, 1999.
[33]  F. Kierszenbaum, M. Fresno, and M. B. Sztein, “The Trypanosoma cruzi membrane glycoprotein AGC10 inhibits human lymphocyte activation by a mechanism preceding translation of both, interleukin-2 and its high-affinity receptor subunits,” Molecular and Biochemical Parasitology, vol. 125, no. 1-2, pp. 91–101, 2002.
[34]  L. van Overtvelt, M. Andrieu, V. Verhasselt et al., “Trypanosoma cruzi down-regulates lipopolysaccharide-induced MHC class I on human dendritic cells and impairs antigen presentation to specific CD8+ T lymphocytes,” International Immunology, vol. 14, no. 10, pp. 1135–1144, 2002.
[35]  S. Zambrano-Villa, D. Rosales-Borjas, J. C. Carrero, and L. Ortiz-Ortiz, “How protozoan parasites evade the immune response,” Trends in Parasitology, vol. 18, no. 6, pp. 272–278, 2002.
[36]  P. Alcaide and M. Fresno, “The Trypanosoma cruzi membrane mucin AgC10 inhibits T cell activation and IL-2 transcription through L-selectin,” International Immunology, vol. 16, no. 10, pp. 1365–1375, 2004.
[37]  F. R. Gutierrez, P. M. Guedes, R. T. Gazzinelli, and J. S. Silva, “The role of parasite persistence in pathogenesis of Chagas heart disease,” Parasite Immunology, vol. 31, no. 11, pp. 673–685, 2009.
[38]  A. M. Padilla, L. J. Simpson, and R. L. Tarleton, “Insufficient TLR activation contributes to the slow development of CD8+ T cell responses in Trypanosoma cruzi infection,” Journal of Immunology, vol. 183, no. 2, pp. 1245–1252, 2009.
[39]  M. J. Pinazo, G. Espinosa, C. Cortes-Lletget et al., “Immunosuppression and Chagas disease: a management challenge,” PLOS Neglected Tropical Diseases, vol. 7, no. 1, Article ID e1965, 2013.
[40]  A. Morrot, E. Terra-Granado, A. R. Pérez et al., “Chagasic thymic atrophy does not affect negative selection but results in the export of activated CD4+CD8+ T cells in severe forms of human disease,” PLoS Neglected Tropical Diseases, vol. 5, no. 8, Article ID e1268, 2011.
[41]  V. Cotta-de-Almeida, á. L. Bertho, D. M. S. Villa-Verde, and W. Savino, “Phenotypic and functional alterations of thymic nurse cells following acute Trypanosoma cruzi infection,” Clinical Immunology and Immunopathology, vol. 82, no. 2, pp. 125–132, 1997.
[42]  V. Cotta-de-Almeida, A. Bonomo, D. A. Mendes-da-Cruz et al., “Trypanosoma cruzi infection modulates intrathymic contents of extracellular matrix ligands and receptors and alters thymocyte migration,” European Journal of Immunology, vol. 33, no. 9, pp. 2439–2448, 2003.
[43]  W. Savino, D. A. Mendes-da-Cruz, S. Smaniotto, E. Silva-Monteiro, and D. M. Serra Villa-Verde, “Molecular mechanisms governing thymocyte migration: combined role of chemokines and extracellular matrix,” Journal of Leukocyte Biology, vol. 75, no. 6, pp. 951–961, 2004.
[44]  D. A. Mendes-da-Cruz, J. S. Silva, V. Cotta-de-Almeida, and W. Savino, “Altered thymocyte migration during experimental acute Trypanosoma cruzi infection: combined role of fibronectin and the chemokines CXCL12 and CCL4,” European Journal of Immunology, vol. 36, no. 6, pp. 1486–1493, 2006.
[45]  J. de Meis, A. Morrot, D. A. Farias-de-Oliveira, D. M. S. Villa-Verde, and W. Savino, “Differential regional immune response in Chagas disease,” PLoS Neglected Tropical Diseases, vol. 3, no. 7, article e417, 2009.
[46]  M. Hofmann, A. Oschowitzer, S. R. Kurzhals, C. C. Krüger, and H. Pircher, “Thymus-resident memory CD8+ T cells mediate local immunity,” European Journal of Immunology, vol. 43, no. 9, pp. 2295–2304, 2013.
[47]  E. V. Acosta Rodriguez, E. I. Zuniga, C. L. Montes et al., “Trypanosoma cruzi infection beats the B-cell compartment favouring parasite establishment: can we strike first?” Scandinavian Journal of Immunology, vol. 66, no. 2-3, pp. 137–142, 2007.
[48]  G. A. DosReis, “Evasion of immune responses by Trypanosoma cruzi, the etiological agent of Chagas disease,” Brazilian Journal of Medical and Biological Research, vol. 44, no. 2, pp. 84–90, 2011.
[49]  M. E. Giorgi and R. M. de Lederkremer, “Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite,” Carbohydrate Research, vol. 346, no. 12, pp. 1389–1393, 2011.
[50]  L. M. de Pablos and A. Osuna, “Multigene families in Trypanosoma cruzi and their role in infectivity,” Infection and Immunity, vol. 80, no. 7, pp. 2258–2264, 2012.
[51]  G. A. DosReis, C. G. Freire-de-Lima, M. P. Nunes, and M. F. Lopes, “The importance of aberrant T-cell responses in Chagas disease,” Trends in Parasitology, vol. 21, no. 5, pp. 237–243, 2005.
[52]  F. R. Gutierrez, P. M. Guedes, R. T. Gazzinelli, and J. S. Silva, “The role of parasite persistence in pathogenesis of Chagas heart disease,” Parasite Immunology, vol. 31, no. 11, pp. 673–685, 2009.
[53]  F. Nagajyothi, F. S. Machado, B. A. Burleigh et al., “Mechanisms of Trypanosoma cruzi persistence in Chagas disease,” Cellular Microbiology, vol. 14, no. 5, pp. 634–643, 2012.
[54]  I. A. Abrahamsohn and R. L. Coffman, “Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection,” Journal of Immunology, vol. 155, no. 8, pp. 3955–3963, 1995.
[55]  G. A. Martins, M. A. G. Cardoso, J. C. S. Aliberti, and J. S. Silva, “Nitric oxide-induced apoptotic cell death in the acute phase of Trypanosoma cruzi infection in mice,” Immunology Letters, vol. 63, no. 2, pp. 113–120, 1998.
[56]  M. P. Nunes, R. M. Andrade, M. F. Lopes, and G. A. DosReis, “Activation-induced T cell death exacerbates Trypanosoma cruzi replication in macrophages cocultured with CD4+ T lymphocytes from infected hosts,” Journal of Immunology, vol. 160, no. 3, pp. 1313–1319, 1998.
[57]  S. Schenkman, M. S. Jiang, G. W. Hart, and V. Nussenzweig, “A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells,” Cell, vol. 65, no. 7, pp. 1117–1125, 1991.
[58]  S. Schenkman, D. Eichinger, M. E. A. Pereira, and V. Nussenzweig, “Structural and functional properties of Trypanosoma trans-sialidase,” Annual Review of Microbiology, vol. 48, pp. 499–523, 1994.
[59]  J. O. Previato, C. Jones, M. T. Xavier et al., “Structural characterization of the major glycosylphosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain,” Journal of Biological Chemistry, vol. 270, no. 13, pp. 7241–7250, 1995.
[60]  M. E. Giorgi and R. M. de Lederkremer, “Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite,” Carbohydrate Research, vol. 346, no. 12, pp. 1389–1393, 2011.
[61]  J. M. di Noia, D. O. Sanchez, and A. C. C. Frasch, “The protozoan Trypanosoma cruzi has a family of genes resembling the mucin genes of mammalian cells,” Journal of Biological Chemistry, vol. 270, no. 41, pp. 24146–24149, 1995.
[62]  C. A. Buscaglia, V. A. Campo, A. C. C. Frasch, and J. M. di Noia, “Trypanosoma cruzi surface mucins: host-dependent coat diversity,” Nature Reviews Microbiology, vol. 4, no. 3, pp. 229–236, 2006.
[63]  L. Mendon?a-Previato, L. Penha, T. C. Garcez, C. Jones, and J. O. Previato, “Addition of α-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi,” Glycoconjugate Journal, vol. 30, no. 7, pp. 659–666, 2013.
[64]  K. Joiner, A. Sher, T. Gaither, and C. Hammer, “Evasion of alternative complement pathway by Trypanosoma cruzi results from inefficient binding of factor B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 17, pp. 6593–6597, 1986.
[65]  R. T. Gazzinelli, M. E. S. Pereira, A. Romanha, G. Gazzinelli, and Z. Brener, “Direct lysis of Trypanosoma cruzi: a novel effector mechanism of protection mediated by human anti-gal antibodies,” Parasite Immunology, vol. 13, no. 4, pp. 345–356, 1991.
[66]  T. L. Kipnis, J. R. David, and C. A. Alper, “Enzymatic treatment transforms trypomastigotes of Trypanosoma cruzi into activators of alternative complement pathway and potentiates their uptake by macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 1, pp. 602–605, 1981.
[67]  V. L. Pereira-Chioccola, A. Acosta-Serrano, I. C. de Almeida et al., “Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-α-galactosyl antibodies,” Journal of Cell Science, vol. 113, no. 7, pp. 1299–1307, 2000.
[68]  H. Erdmann, C. Steeg, F. Koch-Nolte, B. Fleischer, and T. Jacobs, “Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E),” Cellular Microbiology, vol. 11, no. 11, pp. 1600–1611, 2009.
[69]  M. P. Nunes, B. Fortes, J. L. Silva-Filho et al., “Inhibitory effects of Trypanosoma cruzi sialoglycoproteins on CD4+ T Cells are associated with increased susceptibility to infection,” PLoS ONE, vol. 8, no. 10, Article ID e77568, 2013.
[70]  S. Pillai, I. A. Netravali, A. Cariappa, and H. Mattoo, “Siglecs and immune regulation,” Annual Review of Immunology, vol. 30, pp. 357–392, 2012.
[71]  D. A. Bermejo, S. W. Jackson, M. Gorosito-Serran et al., “Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells,” Nature Immunology, vol. 14, pp. 514–522, 2013.
[72]  H. Erdmann, C. Steeg, F. Koch-Nolte, B. Fleischer, and T. Jacobs, “Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E),” Cellular Microbiology, vol. 11, no. 11, pp. 1600–1611, 2009.
[73]  T. Jacobs, H. Erdmann, and B. Fleischer, “Molecular interaction of Siglecs (sialic acid-binding Ig-like lectins) with sialylated ligands on Trypanosoma cruzi,” European Journal of Cell Biology, vol. 89, no. 1, pp. 113–116, 2010.
[74]  P. R. Crocker, J. C. Paulson, and A. Varki, “Siglecs and their roles in the immune system,” Nature Reviews Immunology, vol. 7, no. 4, pp. 255–266, 2007.
[75]  Z. Yu, M. Maoui, L. Wu, D. Banville, and S. Shen, “mSiglec-E, a novel mouse CD33-related siglec (sialic acid-binding immunoglobulin-like lectin) that recruits Src homology 2 (SH2)-domain-containing protein tyrosine phosphatases SHP-1 and SHP-2,” Biochemical Journal, vol. 353, no. 3, pp. 483–492, 2001.
[76]  J. Q. Zhang, B. Biedermann, L. Nitschke, and P. R. Crocker, “The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils,” European Journal of Immunology, vol. 34, no. 4, pp. 1175–1184, 2004.
[77]  T. L. Tinder, D. B. Subramani, G. D. Basu et al., “MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma,” Journal of Immunology, vol. 181, no. 5, pp. 3116–3125, 2008.
[78]  P. Allavena, M. Chieppa, G. Bianchi et al., “Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages,” Clinical and Developmental Immunology, vol. 2010, Article ID 547179, 10 pages, 2010.
[79]  M. Ohta, A. Ishida, M. Toda et al., “Immunomodulation of monocyte-derived dendritic cells through ligation of tumor-produced mucins to Siglec-9,” Biochemical and Biophysical Research Communications, vol. 402, no. 4, pp. 663–669, 2010.
[80]  T. Freire, R. Lo-Man, S. Bay, and C. Leclerc, “Tn glycosylation of the MUC6 protein modulates its immunogenicity and promotes the induction of Th17-biased T cell responses,” Journal of Biological Chemistry, vol. 286, no. 10, pp. 7797–7811, 2011.
[81]  A. Anandkumar and H. Devaraj, “Tumor Immunomodulation: mucins in resistance to initiation and maturation of immune response against tumors,” Scandinavian Journal of Immunology, vol. 78, no. 1, pp. 1–7, 2013.
[82]  C. Charvet, A. J. Canonigo, S. Bécart et al., “Vav1 promotes T cell cycle progression by linking TCR/CD28 costimulation to FOXO1 and p27kip1 expression,” Journal of Immunology, vol. 177, pp. 5024–5031, 2006.
[83]  A. Jatzek, M. M. Tejera, A. Singh, J. A. Sullivan, E. H. Plisch, and M. Suresh, “p27(Kip1) negatively regulates the magnitude and persistence of CD4 T cell memory,” Journal of Immunology, vol. 189, pp. 5119–5128, 2012.
[84]  C. M. Sawai, J. Freund, P. Oh et al., “Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia,” Cancer Cell, vol. 22, pp. 452–465, 2012.
[85]  A. Deshpande, P. Sicinski, and P. W. Hinds, “Cyclins and cdks in development and cancer: a perspective,” Oncogene, vol. 24, no. 17, pp. 2909–2915, 2005.
[86]  W. Wu, D. C. Munday, G. Howell, G. Platt, J. N. Barr, and J. A. Hiscox, “Characterization of the interaction between human respiratory syncytial virus and the cell cycle in continuous cell culture and primary human airway epithelial cells,” Journal of Virology, vol. 85, no. 19, pp. 10300–10309, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133