全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Scientifica  2013 

Brown Adipose Tissue Growth and Development

DOI: 10.1155/2013/305763

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300?watts/kg of heat compared to 1?watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle. 1. Introduction The study of brown adipose tissue (BAT) biology has always been an exciting and vibrant arena not least because although this tissue is present in comparatively small amounts, it can have a pivotal role in energy balance [1, 2]. BAT is characterised as possessing large amounts of the unique uncoupling protein (UCP) 1 which when activated enables the free-flow of protons across the inner mitochondrial membrane, resulting in the rapid dissipation of chemical energy as heat [1]. Consequently, when maximally activated, BAT can generate up to 300?W/kg of tissue compared with 1?W/kg from most other tissues [3]. This process is regulated primarily by the unmasking of GDP-binding sites located within UCP1 [4, 5] and represents the initial response necessary to ensure rapid heat generation [6]. The primary energy source for this process comes from nonesterified fatty acids that are released from lipid at the same time as UCP1 is activated, usually through activation of the sympathetic nervous system [1]. Despite the control of BAT being well documented from a range of investigations in both small [7] and large mammals [8], it has only been over the past decade following the discovery of the presence of thermogenically active BAT in adult humans that its potential role in a range of homeorhetic processes has been

References

[1]  B. Cannon and J. Nedergaard, “Brown adipose tissue: function and physiological significance,” Physiological Reviews, vol. 84, no. 1, pp. 277–359, 2004.
[2]  R. E. Smith and B. A. Horwitz, “Brown fat and thermogenesis,” Physiological Reviews, vol. 49, no. 2, pp. 330–425, 1969.
[3]  G. G. Power, “Biology of temperature: the mammalian fetus,” Journal of Developmental Physiology, vol. 12, no. 6, pp. 295–304, 1989.
[4]  G. M. Heaton and D. G. Nicholls, “The structural specificity of the nucleotide-binding site and the reversible nature of the inhibition of proton conductance induced by bound nucleotides in brown-adipose-tissue mitochondria,” Biochemical Society Transactions, vol. 5, no. 1, pp. 210–212, 1977.
[5]  D. G. Nicholls and R. M. Locke, “Thermogenic mechanisms in brown fat,” Physiological Reviews, vol. 64, no. 1, pp. 1–64, 1984.
[6]  P. Trayhurn, M. Ashwell, G. Jennings, D. Richard, and D. M. Stirling, “Effect of warm or cold exposure on GDP binding and uncoupling protein in rat brown fat,” American Journal of Physiology, vol. 252, no. 2, pp. E237–E243, 1987.
[7]  L. P. Kozak and R. A. Koza, “The genetics of brown adipose tissue,” Progress in Molecular Biology and Translational Science, vol. 94, pp. 75–123, 2010.
[8]  M. E. Symonds, M. Pope, D. Sharkey, and H. Budge, “Adipose tissue and fetal programming,” Diabetologia, vol. 55, pp. 1597–1606, 2012.
[9]  J. Nedergaard, T. Bengtsson, and B. Cannon, “Unexpected evidence for active brown adipose tissue in adult humans,” American Journal of Physiology, vol. 293, no. 2, pp. E444–E452, 2007.
[10]  E. Ravussin and J. E. Galgani, “The implication of brown adipose tissue for humans,” Annual Review of Nutrition, vol. 31, pp. 33–47, 2011.
[11]  A. Bartelt and J. Heeren, “The holy grail of metabolic disease: brown adipose tissue,” Current Opinion in Lipidology, vol. 23, pp. 190–195, 2012.
[12]  M. E. Symonds, S. P. Sebert, and H. Budge, “Nutritional regulation of fetal growth and implications for productive life in ruminants,” Animal, vol. 4, no. 7, pp. 1075–1083, 2010.
[13]  M. E. Symonds and H. Budge, “How promising is thermal imaging in the quest to combat obesity?” Imaging in Medicine, vol. 4, pp. 589–591, 2012.
[14]  D. J. Mellor and F. Cockburn, “A comparison of energy metabolism in the new-born infant, piglet and lamb,” Quarterly Journal of Experimental Physiology, vol. 71, no. 3, pp. 361–379, 1986.
[15]  K. A. Virtanen, M. E. Lidell, J. Orava et al., “Functional brown adipose tissue in healthy adults,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1518–1525, 2009.
[16]  A. Hamann, J. S. Flier, and B. B. Lowell, “Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia,” Endocrinology, vol. 137, no. 1, pp. 21–29, 1996.
[17]  G. H. Vijgen, N. D. Bouvy, G. J. Teule et al., “Increase in brown adipose tissue activity after weight loss in morbidly obese subjects,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, pp. 1229–1233, 2012.
[18]  G. H. E. J. Vijgen, N. D. Bouvy, G. J. J. Teule, B. Brans, P. Schrauwen, and W. D. van Marken Lichtenbelt, “Brown adipose tissue in morbidly obese subjects,” PLoS ONE, vol. 6, no. 2, Article ID e17247, 2011.
[19]  V. Ouellet, S. M. Labbe, D. P. Blondin, et al., “Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans,” The Journal of Clinical Investigation, vol. 122, pp. 545–552, 2012.
[20]  W. Parks Brian, E. Nam, E. Org, et al., “Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice,” Cell Metabolism, vol. 17, pp. 141–152, 2013.
[21]  T. Fromme and M. Klingenspor, “Uncoupling protein 1 expression and high-fat diets,” American Journal of Physiology, vol. 300, no. 1, pp. R1–R8, 2011.
[22]  A. J. Whittle, S. Carobbio, L. Martins, et al., “BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions,” Cell, vol. 149, pp. 871–885, 2012.
[23]  T. D. Muller, S. J. Lee, M. Jastroch, et al., “P62 Links beta-adrenergic input to mitochondrial function and thermogenesis,” The Journal of Clinical Investigation, vol. 123, pp. 469–478, 2013.
[24]  J. Sanchez-Gurmaches, C. M. Hung, C. A. Sparks, Y. Tang, H. Li, and D. A. Guertin, “PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors,” Cell Metabolism, vol. 16, pp. 348–362, 2012.
[25]  C. W. Liew, J. Boucher, J. K. Cheong, et al., “Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance,” Nature Medicine, vol. 19, pp. 217–226, 2013.
[26]  F. W. Kiefer, C. Vernochet, P. O'Brien, et al., “Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue,” Nature Medicine, vol. 18, pp. 918–925, 2012.
[27]  M. E. Symonds, H. Budge, A. C. Perkins, and M. A. Lomax, “Adipose tissue development—impact of the early life environment,” Progress in Biophysics and Molecular Biology, vol. 106, no. 1, pp. 300–306, 2011.
[28]  M. E. Symonds, S. Sebert, and H. Budge, “The obesity epidemic: from the environment to epigenetics—not simply a response to dietary manipulation in a thermoneutral environment,” Frontiers in Epigenomics, vol. 2, article 24, 2011.
[29]  S. H. Jacobson, D. M. King, and R. Yuan, “A note on the relationship between obesity and driving,” Transport Policy, vol. 18, no. 5, pp. 772–776, 2011.
[30]  W. Blessing, M. Mohammed, and Y. Ootsuka, “Heating and eating: brown adipose tissue thermogenesis precedes food ingestion as part of the ultradian basic rest-activity cycle in rats,” Physiology & Behavior, vol. 105, pp. 966–974, 2012.
[31]  T. F. Hany, E. Gharehpapagh, E. M. Kamel, A. Buck, J. Himms-Hagen, and G. K. von Schulthess, “Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region,” European Journal of Nuclear Medicine, vol. 29, no. 10, pp. 1393–1398, 2002.
[32]  C. Cohade, M. Osman, H. K. Pannu, and R. L. Wahl, “Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT,” Journal of Nuclear Medicine, vol. 44, no. 2, pp. 170–176, 2003.
[33]  H. W. D. Yeung, R. K. Grewal, M. Gonen, H. Sch?der, and S. M. Larson, “Patterns of 18F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET,” Journal of Nuclear Medicine, vol. 44, no. 11, pp. 1789–1796, 2003.
[34]  W. D. van Marken Lichtenbelt, J. W. Vanhommerig, N. M. Smulders et al., “Cold-activated brown adipose tissue in healthy men,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1500–1508, 2009.
[35]  J. Orava, P. Nuutila, M. E. Lidell et al., “Different metabolic responses of human brown adipose tissue to activation by cold and insulin,” Cell Metabolism, vol. 14, no. 2, pp. 272–279, 2011.
[36]  I. T. H. Au-Yong, N. Thorn, R. Ganatra, A. C. Perkins, and M. E. Symonds, “Brown adipose tissue and seasonal variation in humans,” Diabetes, vol. 58, no. 11, pp. 2583–2587, 2009.
[37]  A. M. Cypess, S. Lehman, G. Williams et al., “Identification and importance of brown adipose tissue in adult humans,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1509–1517, 2009.
[38]  P. Lee, J. R. Greenfield, K. K. Y. Ho, and M. J. Fulham, “A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans,” American Journal of Physiology, vol. 299, no. 4, pp. E601–E606, 2010.
[39]  A. C. Perkins, D. S. Mshelia, M. E. Symonds, and M. Sathekge, “Prevalence and pattern of brown adipose tissue distribution of 18F-FDG in patients undergoing PET-CT in a sub-tropical climatic zone,” Nuclear Medicine Communications, vol. 34, no. 2, pp. 168–174, 2013.
[40]  Y. C. Huang, C. C. Hsu, P. Huang et al., “The changes in brain metabolism in people with activated brown adipose tissue: a PET study,” NeuroImage, vol. 54, no. 1, pp. 142–147, 2011.
[41]  J. Nedergaard, T. Bengtsson, and B. Cannon, “Three years with adult human brown adipose tissue,” Annals of the New York Academy of Sciences, vol. 1212, pp. E20–E36, 2010.
[42]  M. Saito, Y. Okamatsu-Ogura, M. Matsushita et al., “High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity,” Diabetes, vol. 58, no. 7, pp. 1526–1531, 2009.
[43]  T. Yoneshiro, S. Aita, M. Matsushita, et al., “Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans,” Obesity, vol. 19, pp. 1755–1760, 2011.
[44]  M. E. Symonds, K. Henderson, L. Elvidge et al., “Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children,” Journal of Pediatrics, vol. 161, pp. 892–898, 2012.
[45]  W. D. van Marken Lichtenbelt and P. Schrauwen, “Implications of nonshivering thermogenesis for energy balance regulation in humans,” American Journal of Physiology, vol. 301, no. 2, pp. R285–R296, 2011.
[46]  B. Cannon and J. Nedergaard, “Cell biology: neither brown nor white,” Nature, vol. 488, pp. 286–287, 2012.
[47]  P. Seale, B. Bjork, W. Yang et al., “PRDM16 controls a brown fat/skeletal muscle switch,” Nature, vol. 454, no. 7207, pp. 961–967, 2008.
[48]  J. Wu, P. Bostrom, L. M. Sparks, et al., “Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human,” Cell, vol. 150, pp. 366–376, 2012.
[49]  T. B. Walden, I. R. Hansen, J. A. Timmons, B. Cannon, and J. Nedergaard, “Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues,” American Journal of Physiology, vol. 302, pp. E19–E31, 2012.
[50]  A. Frontini and S. Cinti, “Distribution and development of brown adipocytes in the murine and human adipose organ,” Cell Metabolism, vol. 11, no. 4, pp. 253–256, 2010.
[51]  B. Xue, J. S. Rim, J. C. Hogan, A. A. Coulter, R. A. Koza, and L. P. Kozak, “Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat,” Journal of Lipid Research, vol. 48, no. 1, pp. 41–51, 2007.
[52]  J. Nedergaard and B. Cannon, “UCP1 mRNA does not produce heat,” Biochimica et Biophysica Acta, no. 13, pp. 27–29, 2013.
[53]  J. Wu, P. Cohen, and B. M. Spiegelman, “Adaptive thermogenesis in adipocytes: Is beige the new brown?” Genes & Development, vol. 27, pp. 234–250, 2013.
[54]  M. E. Symonds, J. A. Bird, L. Clarke, J. J. Gate, and M. A. Lomax, “Nutrition, temperature and homeostasis during perinatal development,” Experimental Physiology, vol. 80, no. 6, pp. 907–940, 1995.
[55]  W. Aherne and D. Hull, “Brown adipose tissue and heat production in the newborn infant,” The Journal of Pathology and Bacteriology, vol. 91, no. 1, pp. 223–234, 1966.
[56]  G. Alexander and A. W. Bell, “Quantity and calculated oxygen consumption during summit metabolism of brown adipose tissue in newborn lambs,” Biology of the Neonate, vol. 26, no. 3-4, pp. 214–220, 1975.
[57]  D. Hull and M. M. Segall, “Heat production in the new-born rabbit and the fat content of the brown adipose tissue,” Journal of Physiology, vol. 181, no. 3, pp. 468–477, 1965.
[58]  L. Clarke, L. Heasman, K. Firth, and M. E. Symonds, “Influence of route of delivery and ambient temperature on thermoregulation in newborn lambs,” American Journal of Physiology, vol. 272, no. 6, pp. R1931–R1939, 1997.
[59]  E. M. Widdowson, “Chemical composition of newly born mammals,” Nature, vol. 166, no. 4224, pp. 626–628, 1950.
[60]  H. Budge and M. E. Symonds, “Fetal and neonatal nutrition—lipid and carbohydrate requirements and adaptations to altered supply at birth,” in Textbook of Perinatal MEdicine, A. Kurjak and F. A. Chrervenak, Eds., pp. 1007–1016, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2006.
[61]  B. Cannon, E. Connoley, M.-J. Obregon, and J. Nedergaard, “Perinatal activation of brown adipose tissue,” in The Endocrine Control of the Fetus, W. Kunzel and A. Jesen, Eds., pp. 306–320, Springer, Berlin, Germany, 1988.
[62]  M. E. Symonds, T. Stephenson, D. S. Gardner, and H. Budge, “Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows,” Reproduction, Fertility and Development, vol. 19, no. 1, pp. 53–63, 2007.
[63]  M. E. Symonds and M. A. Lomax, “Maternal and environmental influences on thermoregulation in the neonate,” Proceedings of the Nutrition Society, vol. 51, no. 2, pp. 165–172, 1992.
[64]  M. Giralt, I. Martin, R. Iglesias, O. Vinas, F. Villarroya, and T. Mampel, “Ontogeny and perinatal modulation of gene expression in rat brown adipose tissue. Unaltered iodothyronine 5′-deiodinase activity is necessary for the response to environmental temperature at birth,” European Journal of Biochemistry, vol. 193, no. 1, pp. 297–302, 1990.
[65]  M. S. Blumberg and G. Sokoloff, “Thermoregulatory competence and behavioral expression in the young of altricial species—revisited,” Developmental Psychobiology, vol. 33, pp. 107–123, 1998.
[66]  M. E. Symonds, A. Mostyn, and T. Stephenson, “Cytokines and cytokine receptors in fetal growth and development,” Biochemical Society Transactions, vol. 29, no. 2, pp. 33–37, 2001.
[67]  L. Clarke, J. A. Bird, M. A. Lomax, and M. E. Symonds, “Effect of β3-adrenergic agonist (Zeneca D7114) on thermoregulation in near-term lambs delivered by cesarean section,” Pediatric Research, vol. 40, no. 2, pp. 330–336, 1996.
[68]  P. Trayhurn, N. J. Temple, and J. Van Aerde, “Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig,” Canadian Journal of Physiology and Pharmacology, vol. 67, no. 12, pp. 1480–1485, 1989.
[69]  F. Berg, U. Gustafson, and L. Andersson, “The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets,” PLoS Genetics, vol. 2, no. 8, article e129, 2006.
[70]  M. Pope, H. Budge, and M. E. Symonds, “The developmental transition of ovine adipose tissue through early life,” Acta Physiologica Scandinavica, 2013.
[71]  L. Clarke, M. J. Bryant, M. A. Lomax, and M. E. Symonds, “Maternal manipulation of brown adipose tissue and liver development in the ovine fetus during late gestation,” British Journal of Nutrition, vol. 77, no. 6, pp. 871–883, 1997.
[72]  R. T. Gemmell, A. W. Bell, and G. Alexander, “Morphology of adipose cells in lambs at birth and during subsequent transition of brown to white adipose tissue in cold and in warm conditons,” American Journal of Anatomy, vol. 133, no. 2, pp. 143–164, 1972.
[73]  R. T. Gemmell and G. Alexander, “Ultrastructural development of adipose tissue in foetal sheep,” Australian Journal of Biological Sciences, vol. 31, no. 5, pp. 505–515, 1978.
[74]  T. Scholzen and J. Gerdes, “The Ki-67 protein: from the known and the unknown,” Journal of Cellular Physiology, vol. 182, pp. 311–322, 2000.
[75]  Y. H. Tseng, E. Kokkotou, T. J. Schulz et al., “New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure,” Nature, vol. 454, pp. 1000–1004, 2008.
[76]  S. Kajimura, P. Seale, K. Kubota et al., “Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex,” Nature, vol. 460, no. 7259, pp. 1154–1158, 2009.
[77]  J. A. Bird, J. A. D. Spencer, T. Mould, and M. E. Symonds, “Endocrine and metabolic adaptation following caesarean section or vaginal delivery,” Archives of Disease in Childhood, vol. 74, no. 2, pp. F132–F134, 1996.
[78]  S. Viengchareun, N. Servel, B. Fève, M. Freemark, M. Lombès, and N. Binart, “Prolactin receptor signaling is essential for perinatal brown adipocyte function: a role for insulin-like growth factor-2,” PLoS ONE, vol. 3, no. 2, Article ID e1535, 2008.
[79]  S. Pearce, H. Budge, A. Mostyn et al., “Prolactin, the prolactin receptor and uncoupling protein abundance and function in adipose tissue during development in young sheep,” Journal of Endocrinology, vol. 184, no. 2, pp. 351–359, 2005.
[80]  M. O. Ribeiro, S. D. C. Bianco, M. Kaneshige et al., “Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-β isoform specific and required for adaptive thermogenesis,” Endocrinology, vol. 151, no. 1, pp. 432–440, 2010.
[81]  J. A. Hall, S. Ribich, M. A. Christoffolete et al., “Absence of thyroid hormone activation during development underlies a permanent defect in adaptive thermogenesis,” Endocrinology, vol. 151, no. 9, pp. 4573–4582, 2010.
[82]  M. Uldry, W. Yang, J. St-Pierre, J. Lin, P. Seale, and B. M. Spiegelman, “Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation,” Cell Metabolism, vol. 3, no. 5, pp. 333–341, 2006.
[83]  M. A. Lomax, F. Sadiq, G. Karamanlidis, A. Karamitri, P. Trayhurn, and D. G. Hazlerigg, “Ontogenic loss of brown adipose tissue sensitivity to β-adrenergic stimulation in the ovine,” Endocrinology, vol. 148, no. 1, pp. 461–468, 2007.
[84]  P. J. Fernandez-Marcos and J. Auwerx, “Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis,” The American Journal of Clinical Nutrition, vol. 93, no. 4, pp. 884S–890S, 2011.
[85]  J. M. Bassett and M. E. Symonds, “β2-agonist ritodrine, unlike natural catecholamines, activates thermogenesis prematurely in fetal sheep,” American Journal of Physiology, vol. 275, no. 1, pp. R112–R119, 1998.
[86]  P. Seale, “Transcriptional control of brown adipocyte development and thermogenesis,” International Journal of Obesity, vol. 34, supplement 1, pp. S17–S22, 2010.
[87]  F. M. Gregoire, C. M. Smas, and H. S. Sul, “Understanding adipocyte differentiation,” Physiological Reviews, vol. 78, no. 3, pp. 783–809, 1998.
[88]  P. Li, “Cidea, brown fat and obesity,” Mechanisms of Ageing and Development, vol. 125, no. 4, pp. 337–338, 2004.
[89]  F. Forner, C. Kumar, C. A. Luber, T. Fromme, M. Klingenspor, and M. Mann, “Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions,” Cell Metabolism, vol. 10, no. 4, pp. 324–335, 2009.
[90]  H. Pilegaard, G. A. Ordway, B. Saltin, and P. D. Neufer, “Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise,” American Journal of Physiology, vol. 279, no. 4, pp. E806–E814, 2000.
[91]  L. Clarke, D. S. Buss, D. T. Juniper, M. A. Lomax, and M. E. Symonds, “Adipose tissue development during early postnatal life in ewe-reared lambs,” Experimental Physiology, vol. 82, no. 6, pp. 1015–1027, 1997.
[92]  M. Hallberg, D. L. Morganstein, E. Kiskinis et al., “A functional interaction between RIP140 and PGC-1α regulates the expression of the lipid droplet protein CIDEA,” Molecular and Cellular Biology, vol. 28, no. 22, pp. 6785–6795, 2008.
[93]  D. Pan, M. Fujimoto, A. Lopes, and Y. X. Wang, “Twist-1 is a PPARdelta-inducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism,” Cell, vol. 137, no. 1, pp. 73–86, 2009.
[94]  T. J. Schulz and Y. H. Tseng, “Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism,” Cytokine and Growth Factor Reviews, vol. 20, no. 5-6, pp. 523–531, 2009.
[95]  A. Mostyn, S. Pearce, H. Budge et al., “Influence of cortisol on adipose tissue development in the fetal sheep during late gestation,” Journal of Endocrinology, vol. 176, no. 1, pp. 23–30, 2003.
[96]  M. G. Gnanalingham, A. Mostyn, M. E. Symonds, and T. Stephenson, “Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2,” American Journal of Physiology, vol. 289, no. 5, pp. R1407–R1415, 2005.
[97]  M. E. Symonds, A. Mostyn, S. Pearce, H. Budge, and T. Stephenson, “Endocrine and nutritional regulation of fetal adipose tissue development,” Journal of Endocrinology, vol. 179, no. 3, pp. 293–299, 2003.
[98]  M. E. Symonds, “Pregnancy, parturition and neonatal development—interactions between nutrition and thyroid hormones,” Proceedings of the Nutrition Society, vol. 54, no. 2, pp. 329–343, 1995.
[99]  M. E. Symonds, J. A. Bird, C. Sullivan, V. Wilson, L. Clarke, and T. Stephenson, “Effect of delivery temperature on endocrine stimulation of thermoregulation in lambs born by cesarean section,” Journal of Applied Physiology, vol. 88, no. 1, pp. 47–53, 2000.
[100]  L. Heasman, L. Clarke, and M. E. Symonds, “Influence of thyrotropin-releasing hormone administration at birth on thermoregulation in lambs delivered by cesarean,” American Journal of Obstetrics and Gynecology, vol. 183, no. 5, pp. 1257–1262, 2000.
[101]  L. Clarke, L. Heasman, and M. E. Symonds, “Influence of maternal dexamethasone administration on thermoregulation in lambs delivered by caesarean section,” Journal of Endocrinology, vol. 156, no. 2, pp. 307–314, 1998.
[102]  A. Mostyn, J. Bispham, S. Pearce et al., “Differential effects of leptin on thermoregulation and uncoupling protein abundance in the neonatal lamb,” The FASEB Journal, vol. 16, no. 11, pp. 1438–1440, 2002.
[103]  J. Bispham, H. Budge, A. Mostyn et al., “Ambient temperature, maternal dexamethasone, and postnatal ontogeny of leptin in the neonatal lamb,” Pediatric Research, vol. 52, no. 1, pp. 85–90, 2002.
[104]  M. E. Symonds, D. C. Andrews, and P. Johnson, “The control of thermoregulation in the developing lamb during slow wave sleep,” Journal of Developmental Physiology, vol. 11, no. 5, pp. 289–298, 1989.
[105]  L. Clarke, C. J. Darby, M. A. Lomax, and M. E. Symonds, “Effect of ambient temperature during 1st day of life on thermoregulation in lambs delivered by cesarean section,” Journal of Applied Physiology, vol. 76, no. 4, pp. 1481–1488, 1994.
[106]  L. P. Kozak, R. A. Koza, and R. Anunciado-Koza, “Brown fat thermogenesis and body weight regulation in mice: relevance to humans,” International Journal of Obesity, vol. 34, supplement 1, pp. S23–S27, 2010.
[107]  T. R. Gunn and P. D. Gluckman, “Perinatal thermogenesis,” Early Human Development, vol. 42, no. 3, pp. 169–183, 1995.
[108]  A. M. Rudolph, “Distribution and regulation of blood flow in the fetal and neonatal lamb,” Circulation Research, vol. 57, no. 6, pp. 811–821, 1985.
[109]  G. Lossec, Y. Lebreton, J. C. Hulin, M. Fillaut, and P. Herpin, “Age-related changes in oxygen and nutrient uptake by hindquarters in newborn pigs during cold-induced shivering,” Experimental Physiology, vol. 83, no. 6, pp. 793–807, 1998.
[110]  G. Alexander and D. Williams, “Shivering and non-shivering therogenesis during summit metabolism in young lambs,” Journal of Physiology, vol. 198, no. 2, pp. 251–276, 1968.
[111]  N. C. Bal, S. K. Maurya, D. H. Sopariwala, et al., “Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals,” Nature Medicine, vol. 18, pp. 1575–1579, 2012.
[112]  E. Hondares, M. Rosell, F. J. Gonzalez, M. Giralt, R. Iglesias, and F. Villarroya, “Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat,” Cell Metabolism, vol. 11, no. 3, pp. 206–212, 2010.
[113]  F. M. Fisher, S. Kleiner, N. Douris, et al., “FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis,” Genes & Development, vol. 26, pp. 271–281, 2012.
[114]  J. Nedergaard, A. Matthias, V. Golozoubova, A. Jacobsson, and B. Cannon, “UCP1: the original uncoupling protein—and perhaps the only one?” Journal of Bioenergetics and Biomembranes, vol. 31, no. 5, pp. 475–491, 1999.
[115]  M. E. Symonds, D. C. Andrews, and P. Johnson, “The endocrine and metabolic response to feeding in the developing lamb,” Journal of Endocrinology, vol. 123, no. 2, pp. 295–302, 1989.
[116]  M. E. Symonds, M. J. Bryant, L. Clarke, C. J. Darby, and M. A. Lomax, “Effect of maternal cold exposure on brown adipose tissue and thermogenesis in the neonatal lamb,” Journal of Physiology, vol. 455, pp. 487–502, 1992.
[117]  S. J. Schermer, J. A. Bird, M. A. Lomax, D. A. L. Shepherd, and M. E. Symonds, “Effect of fetal thyroidectomy on brown adipose tissue and thermoregulation in newborn lambs,” Reproduction, Fertility and Development, vol. 8, no. 6, pp. 995–1002, 1996.
[118]  M. E. Symonds, D. C. Andrews, D. S. Buss, L. Clarke, C. J. Darby, and M. A. Lomax, “Effect of rearing temperature on perirenal adipose tissue development and thermoregulation following methimazole treatment of postnatal lambs,” Experimental Physiology, vol. 81, no. 6, pp. 995–1006, 1996.
[119]  C. J. Darby, L. Clarke, M. A. Lomax, and M. E. Symonds, “Brown adipose tissue and liver development during early postnatal life in hand-reared and ewe-reared lambs,” Reproduction, Fertility and Development, vol. 8, no. 1, pp. 137–145, 1996.
[120]  A. Mostyn and M. E. Symonds, “Early programming of adipose tissue function: a large-animal perspective,” Proceedings of the Nutrition Society, vol. 68, no. 4, pp. 393–400, 2009.
[121]  M. E. Symonds, D. C. Andrews, D. S. Buss, L. Clarke, and M. A. Lomax, “Influence of rearing temperature on lung development following methimazole treatment of postnatal lambs,” Experimental Physiology, vol. 81, no. 4, pp. 673–683, 1996.
[122]  J. M. Heaton, “The distribution of brown adipose tissue in the human,” Journal of Anatomy, vol. 112, no. 1, pp. 35–39, 1972.
[123]  V. Gilsanz, S. A. Chung, H. Jackson, F. J. Dorey, and H. H. Hu, “Functional brown adipose tissue is related to muscle volume in children and adolescents,” Journal of Pediatrics, vol. 158, no. 5, pp. 722–726, 2011.
[124]  C. Zhang, C. McFarlane, S. Lokireddy, et al., “Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice,” Diabetologia, vol. 55, pp. 183–193, 2012.
[125]  P. Bostrom, J. Wu, M. P. Jedrychowski, et al., “A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, pp. 463–468, 2012.
[126]  J. A. Timmons, K. Baar, P. K. Davidsen, and P. J. Atherton, “Is irisin a human exercise gene?” Nature, vol. 488, pp. E9–E11, 2012.
[127]  D. Ricquier and F. Bouillaud, “The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP,” Biochemical Journal, vol. 345, no. 2, pp. 161–179, 2000.
[128]  A. Mostyn, J. C. Litten, K. S. Perkins et al., “Influence of genotype on the differential ontogeny of uncoupling protein 2 and 3 in subcutaneous adipose tissue and muscle in neonatal pigs,” Journal of Endocrinology, vol. 183, no. 1, pp. 121–131, 2004.
[129]  J. C. Clapham, J. R. S. Arch, H. Chapman et al., “Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean,” Nature, vol. 406, no. 6794, pp. 415–418, 2000.
[130]  C. E. Grueter, E. van Rooij, B. A. Johnson, et al., “A cardiac microRNA governs systemic energy homeostasis by regulation of MED13,” Cell, vol. 149, pp. 671–683, 2012.
[131]  S. Ojha, L. Robinson, M. Yazdani, M. E. Symonds, and H. Budge, “Brown adipose tissue genes in pericardial adipose tissue of newborn sheep are downregulated by maternal nutrient restriction in late gestation,” Pediatric Research. In press.
[132]  H. Budge, L. J. Edwards, I. C. McMillen et al., “Nutritional manipulation of fetal adipose tissue deposition and uncoupling protein 1 messenger RNA abundance in the sheep: differential effects of timing and duration,” Biology of Reproduction, vol. 71, no. 1, pp. 359–365, 2004.
[133]  H. Budge, J. Bispham, J. Dandrea et al., “Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb,” Pediatric Research, vol. 47, no. 6, pp. 781–786, 2000.
[134]  A. Mostyn, V. Wilson, J. Dandrea et al., “Ontogeny and nutritional manipulation of mitochondrial protein abundance in adipose tissue and the lungs of postnatal sheep,” British Journal of Nutrition, vol. 90, no. 2, pp. 323–328, 2003.
[135]  P. A. Svensson, M. Jernas, K. Sjoholm, et al., “Gene expression in human brown adipose tissue,” International Journal of Molecular Medicine, vol. 27, pp. 227–232, 2011.
[136]  H. S. Sacks, J. N. Fain, B. Holman et al., “Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3611–3615, 2009.
[137]  J. Ding, F. C. Hsu, T. B. Harris et al., “The association of pericardial fat with incident coronary heart disease: The Multi-Ethnic Study of Atherosclerosis (MESA),” The American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 499–504, 2009.
[138]  A. Bartelt, O. T. Bruns, R. Reimer et al., “Brown adipose tissue activity controls triglyceride clearance,” Nature Medicine, vol. 17, no. 2, pp. 200–205, 2011.
[139]  L. L. Y. Chan, S. P. Sébert, M. A. Hyatt et al., “Effect of maternal nutrient restriction from early to midgestation on cardiac function and metabolism after adolescent-onset obesity,” American Journal of Physiology, vol. 296, no. 5, pp. R1455–R1463, 2009.
[140]  A. J. Whittle and A. Vidal-Puig, “NPs—heart hormones that regulate brown fat?” The Journal of Clinical Investigation, vol. 122, pp. 804–807, 2012.
[141]  M. Bordicchia, D. Liu, E. Z. Amri, et al., “Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes,” The Journal of Clinical Investigation, vol. 122, pp. 1022–1036, 2012.
[142]  M. E. Symonds, M. Pope, D. Sharkey, and H. Budge, “Adipose tissue and fetal programming,” Diabetologia, vol. 55, no. 6, pp. 1597–1606, 2012.
[143]  N. J. Rothwell and M. J. Stock, “Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour,” Clinical Science, vol. 64, no. 1, pp. 19–23, 1983.
[144]  H. Sacks and M. E. Symonds, “Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes,” Diabetes. In press.
[145]  M. Elqatni and D. Ghafir, “Images in clinical medicine. Hibernoma of the neck,” The New England Journal of Medicine, vol. 367, no. 17, p. 1636, 2012.
[146]  G. H. Vijgen, N. D. Bouvy, M. Smidt, L. Kooreman, G. Schaart, and W. van Marken Lichtenbelt, “Hibernoma with metabolic impact?” BMJ Case Reports, 2012.
[147]  J. A. Bird, A. Mostyn, L. Clarke et al., “Effect of postnatal age and a β3-adrenergic agonist (Zeneca D7114) administration on uncoupling protein-1 abundance in the lamb,” Experimental Physiology, vol. 86, no. 1, pp. 65–70, 2001.
[148]  L. P. Kozak, “Brown fat and the myth of diet-induced thermogenesis,” Cell Metabolism, vol. 11, no. 4, pp. 263–267, 2010.
[149]  B. J. Fueger, J. Czernin, I. Hildebrandt et al., “Impact of animal handling on the results of 18F-FDG PET studies in mice,” Journal of Nuclear Medicine, vol. 47, no. 6, pp. 999–1006, 2006.
[150]  M. E. Symonds, M. Pope, and H. Budge, “Adipose tissue development during early life: novel insights into energy balance from small and large mammals,” Proceedings of the Nutrition Society, vol. 71, pp. 363–370, 2012.
[151]  F. Scazzina, D. Del Rio, L. Benini, et al., “The effect of breakfasts varying in glycemic index and glycemic load on dietary induced thermogenesis and respiratory quotient,” Nutrition, Metabolism & Cardiovascular Diseases, vol. 21, pp. 121–125, 2010.
[152]  K. R. Westerterp, S. A. J. Wilson, and V. Rolland, “Diet induced thermogenesis measured over 24 h in a respiration chamber: effect of diet composition,” International Journal of Obesity, vol. 23, no. 3, pp. 287–292, 1999.
[153]  T. Yoneshiro, S. Aita, Y. Kawai, T. Iwanaga, and M. Saito, “Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans,” The American Journal of Clinical Nutrition, vol. 95, pp. 845–850, 2012.
[154]  A. M. Cypess, Y. C. Chen, C. Sze, et al., “Cold but not sympathomimetics activates human brown adipose tissue in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 10001–10005, 2012.
[155]  M. J. Vosselman, A. A. van der Lans, B. Brans, et al., “Systemic beta-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans,” Diabetes, vol. 61, pp. 3106–3113, 2012.
[156]  E. D. Saggerson, T. W. J. McAllister, and H. S. Baht, “Lipogenesis in rat brown adipocytes. Effects of insulin and noradrenaline, contributions from glucose and lactate as precursors and comparisons with white adipocytes,” Biochemical Journal, vol. 251, no. 3, pp. 701–709, 1988.
[157]  A. L. Carey, M. F. Formosa, B. Every, et al., “Ephedrine activates brown adipose tissue in lean but not obese humans,” Diabetologia, vol. 56, pp. 147–155, 2013.
[158]  T. Yoneshiro, T. Ogawa, N. Okamoto, et al., “Impact of UCP1 and beta3AR gene polymorphisms on age-related changes in brown adipose tissue and adiposity in humans,” 2012.
[159]  R. H. Forrest, J. G. H. Hickford, and C. M. Frampton, “Polymorphism at the ovine β-3-adrenergic receptor locus (ADRB3) and its association with lamb mortality,” Journal of Animal Science, vol. 85, no. 11, pp. 2801–2806, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133