Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy. 1. Introduction Two decades of researching stem cells has brought us to a point where they are beginning to be used to treat or cure diseases. The “big three” stem cell types that comprise the heart of research include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs). Although the 1970s–1990s saw many exciting discoveries pertaining to mouse ESCs and various types of ASCs, the field lit up in the late 1990s with the discovery by James Thompson’s group that human ESCs could be cultured in vitro. ESCs, which are derived from the inner cell mass (ICM) of blastocyst stage embryos, have the ability to undergo self-renewal and to differentiate into any of the three primary germ layers [1, 2]. This characteristic, that is, pluripotency, is the basis for the idea of stem cell therapies [3]. It is widely believed that by harnessing the power of ESC differentiation researchers can guide them into specific mature cell types that can be used to replace dead or damaged cells in various disease states. However, preliminary studies have shown limited success in producing large, pure populations of cells for use as potential therapies [4–8]. While ESCs, iPCs, and some ASCs are among the most promising treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes,
References
[1]
P. Gadue, T. L. Huber, M. C. Nostro, S. Kattman, and G. M. Keller, “Germ layer induction from embryonic stem cells,” Experimental Hematology, vol. 33, no. 9, pp. 955–964, 2005.
[2]
D. A. F. Loebel, C. M. Watson, R. A. De Young, and P. P. L. Tam, “Lineage choice and differentiation in mouse embryos and embryonic stem cells,” Developmental Biology, vol. 264, no. 1, pp. 1–14, 2003.
[3]
D. I. Gottlieb, “Large-scale sources of neural stem cells,” Annual Review of Neuroscience, vol. 25, pp. 381–407, 2002.
[4]
A. C. Lepore and I. Fischer, “Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord,” Experimental Neurology, vol. 194, no. 1, pp. 230–242, 2005.
[5]
J. H. Kim, J. M. Auerbach, J. A. Rodríguez-Gómez et al., “Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease,” Nature, vol. 418, no. 6893, pp. 50–56, 2002.
[6]
D. M. Panchision and R. D. G. McKay, “The control of neural stem cells by morphogenic signals,” Current Opinion in Genetics and Development, vol. 12, no. 4, pp. 478–487, 2002.
[7]
S. Temple, “The development of neural stem cells,” Nature, vol. 414, no. 6859, pp. 112–117, 2001.
[8]
S. H. Lee, N. Lumelsky, L. Studer, J. M. Auerbach, and R. D. McKay, “Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells,” Nature Biotechnology, vol. 18, no. 6, pp. 675–679, 2000.
[9]
B. van Steensel, U. Braunschweig, G. J. Filion, M. Chen, J. G. van Bemmel, and T. Ideker, “Bayesian network analysis of targeting interactions in chromatin,” Genome Research, vol. 20, no. 2, pp. 190–200, 2010.
[10]
K. C. Sonntag, R. Simantov, and O. Isacson, “Stem cells may reshape the prospect of Parkinson's disease therapy,” Molecular Brain Research, vol. 134, no. 1, pp. 34–51, 2005.
[11]
I. Gutierrez-Aranda, V. Ramos-Mejia, C. Bueno et al., “Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection,” Stem Cells, vol. 28, no. 9, pp. 1568–1570, 2010.
[12]
C. A. Palma, R. Lindeman, and B. E. Tuch, “Blood into β-cells: can adult stem cells be used as a therapy for type 1 diabetes?” Regenerative Medicine, vol. 3, no. 1, pp. 33–47, 2008.
[13]
K. Foshay, G. Rodriguez, B. Hoel, J. Narayan, and G. I. Gallicano, “JAK2/STAT3 directs cardiomyogenesis within murine embryonic stem cells in vitro,” Stem Cells, vol. 23, no. 4, pp. 530–543, 2005.
[14]
K. M. Foshay and G. I. Gallicano, “Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate,” Stem Cells and Development, vol. 17, no. 2, pp. 269–278, 2008.
[15]
K. M. Foshay and G. I. Gallicano, “miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation,” Developmental Biology, vol. 326, no. 2, pp. 431–443, 2009.
[16]
K. Nakashima, M. Yanagisawa, H. Arakawa et al., “Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300,” Science, vol. 284, no. 5413, pp. 479–482, 1999.
[17]
R. Raz, C. K. Lee, L. A. Cannizzaro, P. D'Eustachio, and D. E. Levy, “Essential role of STAT3 for embryonic stem cell pluripotency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2846–2851, 1999.
[18]
A. Bonni, Y. Sun, M. Nadal-Vicens et al., “Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway,” Science, vol. 278, no. 5337, pp. 477–483, 1997.
[19]
S. Mobley, J. M. Shookhof, K. Foshay, M. Park, and G. I. Gallicano, “PKG and PKC are down-regulated during cardiomyocyte differentiation from embryonic stem cells: manipulation of these pathways enhances cardiomyocyte production,” Stem Cells International, vol. 2010, Article ID 701212, 10 pages, 2010.
[20]
X. Zhou, E. Quann, and G. I. Gallicano, “Differentiation of nonbeating embryonic stem cells into beating cardiomyocytes is dependent on downregulation of PKCβ and ζ in concert with upregulation of PKCε,” Developmental Biology, vol. 255, no. 2, pp. 407–422, 2003.
[21]
S. Yang, N. D. Nguyen, J. A. Eisman, and T. V. Nguyen, “Association between beta-blockers and fracture risk: a Bayesian meta-analysis,” Bone, vol. 51, no. 5, pp. 969–974, 2011.
[22]
N. D. Nguyen, C. Y. Wang, J. A. Eisman, and T. V. Nguyen, “On the association between statin and fracture: a Bayesian consideration,” Bone, vol. 40, no. 4, pp. 813–820, 2007.
[23]
A. J. R. Matthews, “Why should clinicians care about Bayesian methods?” Journal of Statistical Planning and Inference, vol. 94, no. 1, pp. 43–58, 2001.
[24]
P. R. Burton, L. C. Gurrin, and M. J. Campbell, “Clinical significance not statistical significance: a simple Bayesian alternative to p values,” Journal of Epidemiology and Community Health, vol. 52, no. 5, pp. 318–323, 1998.
[25]
T. Ades, “Bayesian approaches to clinical trials and health-care evaluation,” in Biometrics, D. J. Spiegelhalter, K. R. Abrams, and J. P. Miles, Eds., pp. 306–307, Blackwell, Malden, Mass, USA, 2006.
[26]
S. N. Goodman, “Toward evidence-based medical statistics. 2: the Bayes factor,” Annals of Internal Medicine, vol. 130, no. 12, pp. 1005–1013, 1999.
[27]
N. Kaplan, I. K. Moore, Y. Fondufe-Mittendorf et al., “The DNA-encoded nucleosome organization of a eukaryotic genome,” Nature, vol. 458, no. 7236, pp. 362–366, 2009.
[28]
O. J. Rando and K. Ahmad, “Rules and regulation in the primary structure of chromoatin,” Current Opinion in Cell Biology, vol. 19, pp. 250–256, 2007.
[29]
S. L. Berger, “The complex language of chromatin regulation during transcription,” Nature, vol. 447, no. 7143, pp. 407–412, 2007.
[30]
O. J. Rando, “Global patterens of histone modifications,” Current Opinion in Genetics & Development, vol. 17, pp. 94–99, 2007.
[31]
J. D. Lieb, “Genome-wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray hybridization,” Methods in Molecular Biology, vol. 224, pp. 99–109, 2003.
[32]
F. Greil, C. Moorman, and B. van Steensel, “DamID: mapping of in vivo protein-genome Interactions using tethered DNA adenine methyltransferase,” Methods in Enzymology, vol. 410, pp. 342–359, 2006.
[33]
J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufman, San Francisco, Calif, USA, 1988.
[34]
G. F. Cooper and E. Herskovits, “A Bayesian method for the induction of probabilistic networks from data,” Machine Learning, vol. 9, no. 4, pp. 309–347, 1992.
[35]
N. Friedman, M. Linial, I. Nachman, and D. Pe'er, “Using Bayesian networks to analyze expression data,” Journal of Computational Biology, vol. 7, no. 3-4, pp. 601–620, 2000.
[36]
D. Pe'er, “Bayesian network analysis of signaling networks: a primer,” Science's STKE, vol. 2005, no. 281, p. pl4, 2005.
[37]
D. A. Morales, E. Bengoetxea, P. Larra?aga et al., “Bayesian classification for the selection of in vitro human embryos using morphological and clinical data,” Computer Methods and Programs in Biomedicine, vol. 90, no. 2, pp. 104–116, 2008.
[38]
R. R. Saith, A. Srinivasan, D. Michie, and I. L. Sargent, “Relationships between the developmental potential of human in-vitro fertilization embryos and features describing the embryo, oocyte and follicle,” Human Reproduction Update, vol. 4, no. 2, pp. 121–134, 1998.
[39]
D. A. Morales, E. Bengoetxea, and P. Larra?aga, “Selection of human embryos for transfer by Bayesian classifiers,” Computers in Biology and Medicine, vol. 38, no. 11-12, pp. 1177–1186, 2008.
[40]
J. R. Trimarchi, J. Goodside, L. Passmore, T. Silberstein, L. Hamel, and L. Gonzalez, “Comparing data mining and logistic regression for predicting IVF outcome,” Fertility and Sterility, vol. 80, supplement 3, p. 100, 2003.
[41]
G. Patrizi, C. Manna, C. Moscatelli, and L. Nieddu, “Pattern recognition methods in human-assisted reproduction,” International Transactions in Operational Research, vol. 11, no. 4, pp. 365–379, 2004.
[42]
C. Manna, G. Patrizi, A. Rahman, and H. Sallam, “Experimental results on the recognition of embryos in human assisted reproduction,” Reproductive BioMedicine Online, vol. 8, no. 4, pp. 460–469, 2004.
[43]
K. Mitsui, Y. Tokuzawa, H. Itoh et al., “The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells,” Cell, vol. 113, no. 5, pp. 631–642, 2003.
[44]
I. Chambers, D. Colby, M. Robertson et al., “Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells,” Cell, vol. 113, no. 5, pp. 643–655, 2003.
[45]
R. Bort, J. P. Martinez-Barbera, R. S. P. Beddington, and K. S. Zaret, “Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas,” Development, vol. 131, no. 4, pp. 797–806, 2004.
[46]
S. C. Chapman, F. R. Schubert, G. C. Schoenwolf, and A. Lumsden, “Analysis of spatial and temporal gene expression patterns in blastula and gastrula stage chick embryos,” Developmental Biology, vol. 245, no. 1, pp. 187–199, 2002.
[47]
J. Heo, J. S. Lee, I. S. Chu, Y. Takahama, and S. S. Thorgeirsson, “Spontaneous differentiation of mouse embryonic stem cells in vitro: characterization by global gene expression profiles,” Biochemical and Biophysical Research Communications, vol. 332, no. 4, pp. 1061–1069, 2005.
[48]
M. H. Baron, “Early patterning of the mouse embryo: implications for hematopoietic commitment and differentiation,” Experimental Hematology, vol. 33, no. 9, pp. 1015–1020, 2005.
[49]
S. Tada, T. Era, C. Furusawa et al., “Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture,” Development, vol. 132, no. 19, pp. 4363–4374, 2005.
[50]
A. Kubo, K. Shinozaki, J. M. Shannon et al., “Development of definitive endoderm from embryonic stem cells in culture,” Development, vol. 131, no. 7, pp. 1651–1662, 2004.
[51]
D. L. Chapman, A. Cooper-Morgan, Z. Harrelson, and V. E. Papaioannou, “Critical role for Tbx6 in mesoderm specification in the mouse embryo,” Mechanisms of Development, vol. 120, no. 7, pp. 837–847, 2003.
[52]
H. Uchiyama, T. Kobayashi, A. Yamashita, S. Ohno, and S. Yabe, “Cloning and characterization of the T-box gene Tbx6 in Xenopus laevis,” Development Growth and Differentiation, vol. 43, no. 6, pp. 657–669, 2001.
[53]
P. H. White, D. R. Farkas, and D. L. Chapman, “Regulation of Tbx6 expression by Notch signaling,” Genesis, vol. 42, no. 2, pp. 61–70, 2005.
[54]
D. Sela-Donenfeld and C. Kalcheim, “Localized BMP4-noggin interactions generate the dynamic patterning of noggin expression in somites,” Developmental Biology, vol. 246, no. 2, pp. 311–328, 2002.
[55]
T. Luo, M. Matsuo-Takasaki, M. L. Thomas, D. L. Weeks, and T. D. Sargent, “Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus,” Developmental Biology, vol. 245, no. 1, pp. 136–144, 2002.
[56]
P. J. Mitchell, P. M. Timmons, J. M. Hebert, P. W. J. Rigby, and R. Tjian, “Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis,” Genes and Development, vol. 5, no. 1, pp. 105–119, 1991.
[57]
J. Philipp, P. J. Mitchell, U. Malipiero, and A. Fontana, “Cell type-specific regulation of expression of transcription factor AP-2 in neuroectodermal cells,” Developmental Biology, vol. 165, no. 2, pp. 602–614, 1994.
[58]
L. Puelles, P. Fernández-Garre, L. Sánchez-Arrones, E. García-Calero, and L. Rodríguez-Gallardo, “Correlation of a chicken stage 4 neural plate fate map with early gene expression patterns,” Brain Research Reviews, vol. 49, no. 2, pp. 167–178, 2005.
[59]
H. B. Wood and V. Episkopou, “Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages,” Mechanisms of Development, vol. 86, no. 1-2, pp. 197–201, 1999.
[60]
S. Brunelli, E. S. Casey, D. Bell, R. Harland, and R. Lovell-Badge, “Expression of SOX3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionarily conserved regulatory elements,” Genesis, vol. 36, no. 1, pp. 12–24, 2003.
[61]
P. L. Pfeffer, E. M. De Robertis, and J. C. Izpisua-Belmonte, “Crescent, a novel chick gene encoding a Frizzled-like cysteine-rich domain, is expressed in anterior regions during early embryogenesis,” International Journal of Developmental Biology, vol. 41, no. 3, pp. 449–458, 1997.
[62]
J. F. Pritchard, M. Jurima-Romet, M. L. J. Reimer, E. Mortimer, B. Rolfe, and M. N. Cayen, “Making better drugs: decision gates in non-clinical drug development,” Nature Reviews Drug Discovery, vol. 2, no. 7, pp. 542–553, 2003.
[63]
R. Huang, N. Southall, M. Xia et al., “Weighted feature significance: a simple, interpretable model of compound toxicity based on the statistical enrichment of structural features,” Toxicological Sciences, vol. 112, no. 2, pp. 385–393, 2009.
[64]
C. Hansch and T. Fujita, “ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure,” Journal of the American Chemical Society, vol. 86, no. 8, pp. 1616–1626, 1964.
[65]
C. G. Mohan, T. Gandhi, D. Garg, and R. Shinde, “Computer-assisted methods in chemical toxicity prediction,” Mini-Reviews in Medicinal Chemistry, vol. 7, no. 5, pp. 499–507, 2007.
[66]
L. Pohjala, P. Tammela, S. K. Samanta, J. Yli-Kauhaluoma, and P. Vuorela, “Assessing the data quality in predictive toxicology using a panel of cell lines and cytotoxicity assays,” Analytical Biochemistry, vol. 362, no. 2, pp. 221–228, 2007.
[67]
L. Studer, V. Tabar, and R. D. G. McKay, “Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats,” Nature Neuroscience, vol. 1, no. 4, pp. 290–295, 1998.
[68]
I. Mendez, R. Sanchez-Pernaute, O. Cooper et al., “Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease,” Brain, vol. 128, no. 7, pp. 1498–1510, 2005.
[69]
G. Hargus, O. Cooper, M. Deleidi et al., “Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 36, pp. 15921–15926, 2010.
[70]
X. Zhou and G. I. Gallicano, “Microvascular tubes derived from embryonic stem cells sustain blood flow,” Stem Cells and Development, vol. 15, no. 3, pp. 335–347, 2006.
[71]
M. Buehr, J. Nichols, F. Stenhouse et al., “Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines,” Biology of Reproduction, vol. 68, no. 1, pp. 222–229, 2003.
[72]
J. McWhir, A. E. Schnieke, R. Ansell et al., “Selective ablation of differentiated cells permits isolation of embryonic stem cell lines from murine embryos with a non-permissive genetic background,” Nature Genetics, vol. 14, no. 2, pp. 223–226, 1996.
[73]
W. N. Zhao, G. L. Meng, and Y. F. Xue, “Labeling of three different mouse ES cell lines with the green fluorescent protein,” Yi Chuan Xue Bao, vol. 30, no. 8, pp. 743–749, 2003.
[74]
P. J. Woolf, W. Prudhomme, L. Daheron, G. Q. Daley, and D. A. Lauffenburger, “Bayesian analysis of signaling networks governing embryonic stem cell fate decisions,” Bioinformatics, vol. 21, no. 6, pp. 741–753, 2005.
[75]
K. Sachs, O. Perez, D. Pe'er, D. A. Lauffenburger, and G. P. Nolan, “Causal protein-signaling networks derived from multiparameter single-cell data,” Science, vol. 308, no. 5721, pp. 523–529, 2005.
[76]
J. J. Erasmus, J. E. Connolly, H. P. McAdams, and V. L. Roggli, “Solitary pulmonary nodules: part I. Morphologic evaluation for differentiation of benign and malignant lesions,” Radiographics, vol. 20, no. 1, pp. 43–58, 2000.
[77]
S. S. Siegelman, E. A. Zerhouni, and F. P. Leo, “CT of the solitary pulmonary nodule,” American Journal of Roentgenology, vol. 135, no. 1, pp. 1–13, 1980.
[78]
J. W. Gurney, “Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis. Part I. Theory,” Radiology, vol. 186, no. 2, pp. 405–413, 1993.
[79]
W. C. Black and P. Armstrong, “Communicating the significance of radiologic test results: the likelihood ratio,” American Journal of Roentgenology, vol. 147, no. 6, pp. 1313–1318, 1986.
[80]
J. J. Erasmus, H. P. McAdams, and J. E. Connolly, “Solitary pulmonary nodules: part II. Evaluation of the indeterminate nodule,” Radiographics, vol. 20, no. 1, pp. 59–66, 2000.
[81]
G. A. Lillington and C. I. Caskey, “Evaluation and management of solitary and multiple pulmonary nodules,” Clinics in Chest Medicine, vol. 14, no. 1, pp. 111–119, 1993.
[82]
R. Kunstaetter, N. Wolkove, and H. Kreisman, “The solitary pulmonary nodule. Decision analysis,” Medical Decision Making, vol. 5, no. 1, pp. 61–75, 1985.
[83]
G. A. Lillington and S. R. Cummings, “Decision analysis approaches in solitary pulmonary nodules,” Seminars in Respiratory Medicine, vol. 10, no. 3, pp. 227–231, 1989.
[84]
S. R. Cummings, G. A. Lillington, and R. J. Richard, “Managing solitary pulmonary nodules. The choice of strategy is a “close call”,” American Review of Respiratory Disease, vol. 134, no. 3, pp. 453–460, 1986.
[85]
A. Divoli, E. A. Mendonca, J. A. Evans, and A. Rzhetsky, “Conflicting biomedical assumptions for mathematical modeling: the case of cancer metastasis,” PLoS Computational Biology, vol. 7, pp. 1–15, 2011.
[86]
D. A. Berry, Statistics: A Bayesian Perspective, Duxbury Press, Belmont, Calif, USA, 1996.
[87]
D. J. Spiegelhalter, K. R. Abrams, and J. P. Myles, Bayesian Approaches to Clinical Trials and Health-Care Evaluation, Wiley, West Sussex, UK, 2004.
[88]
A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2nd edition, 2004.
[89]
E. S. Edgington and P. Onghena, Randomization Tests, Chapman & Hall/CRC, Boca Raton, Fla, USA, 4th edition, 2007.
[90]
N. Bellomo, N. K. Li, and P. K. Maini, “On the foundations of cancer modelling: selected topics, speculations, and perspectives,” Mathematical Models and Methods in Applied Sciences, vol. 18, no. 4, pp. 593–646, 2008.
[91]
L. Li, S. M. Larabee, S. Chen et al., “Novel TOPmRNAs regulated by ribosomal S6 kinase are important for cardiomyocyte development: S6 kinase suppression limits cardiac differentiation and promotes pluripotent cells toward a neural lineage,” Stem Cells and Development, vol. 21, no. 9, pp. 1538–1548, 2012.
[92]
A. Dmitrienko and M. D. Wang, “Bayesian predictive approach to interim monitoring in clinical trials,” Statistics in Medicine, vol. 25, no. 13, pp. 2178–2195, 2006.
[93]
S. Weeden, M. Parmar, and L. S. Freedman, “Bayesian reporting of clinical trials,” in Advances in Clinical Trial Biostatistics, N. L. Geller, Ed., pp. 161–188, Marcel Dekker, New York, NY, USA, 2004.
[94]
K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006.
[95]
L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010.
[96]
D. Kim, C. H. Kim, J. I. Moon et al., “Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins,” Cell Stem Cell, vol. 4, no. 6, pp. 472–476, 2009.
[97]
K. Woltjen, I. P. Michael, P. Mohseni et al., “PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature, vol. 458, no. 7239, pp. 766–770, 2009.
[98]
T. Lin, R. Ambasudhan, X. Yuan et al., “A chemical platform for improved induction of human iPSCs,” Nature Methods, vol. 6, no. 11, pp. 805–808, 2009.
[99]
F. Anokye-Danso, C. M. Trivedi, D. Juhr et al., “Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency,” Cell Stem Cell, vol. 8, no. 4, pp. 376–388, 2011.
[100]
N. Miyoshi, H. Ishii, H. Nagano et al., “Reprogramming of mouse and human cells to pluripotency using mature microRNAs,” Cell Stem Cell, vol. 8, no. 6, pp. 633–638, 2011.
[101]
Y. Junying, H. Kejin, S. O. Kim et al., “Human induced pluripotent stem cells free of vector and transgene sequences,” Science, vol. 324, no. 5928, pp. 797–801, 2009.
[102]
R. Chang, R. Shoemaker, and W. Wang, “Systematic search for recipes to gerenarte induced pluripotent stem cells,” PLOS Computational Biology, vol. 7, no. 12, pp. 1–13, 2011.
[103]
Y. Buganim, D. A. Faddah, A. W. Cheng et al., “Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase,” Cell, vol. 150, no. 6, pp. 1209–1222, 2012.
[104]
Y. Flottmann, T. Scharp, and E. Klipp, “A stochastic model of epigenetic dynamics in somatic cell reprogramming,” Frontiers in Physiology, vol. 3, pp. 1–19, article 216, 2012.
[105]
P. Rajan, “STATus and context within the mammalian nervous system,” Molecular Medicine, vol. 17, no. 9-10, pp. 965–973, 2011.
[106]
M. Snyder, X. Y. Huang, and J. J. Zhang, “Stat3 is essential for neuronal differentiation through direct transcriptional regulation of the Sox6 gene,” FEBS Letters, vol. 585, no. 1, pp. 148–152, 2011.
[107]
G. Niu, K. H. Shain, M. Huang et al., “Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest,” Cancer Research, vol. 61, no. 8, pp. 3276–3280, 2001.
[108]
E. Caldenhoven, T. B. Van Dijk, R. Solari et al., “STAT3β, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription,” Journal of Biological Chemistry, vol. 271, no. 22, pp. 13221–13227, 1996.
[109]
D. G. Kleinbaum, Survival Analysis a Self-Learning Text, Springer, New York, NY, USA, 1995.
[110]
S. N. Goodman, “Introduction to Bayesian methods I: measuring the strength of evidence,” Clinical Trials, vol. 2, no. 4, pp. 282–290, 2005.
[111]
K. Tateishi, J. He, O. Taranova, G. Liang, A. C. D'Alessio, and Y. Zhang, “Generation of insulin-secreting islet-like clusters from human skin fibroblasts,” Journal of Biological Chemistry, vol. 283, no. 46, pp. 31601–31607, 2008.
[112]
M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007.
[113]
S. Muenthaisong, O. Ujhelly, Z. Polgar et al., “Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer,” Experimental Cell Research, vol. 318, no. 19, pp. 2482–2489, 2012.
[114]
N. Golestaneh, M. Kokkinaki, D. Pant et al., “Pluripotent stem cells derived from adult human testes,” Stem Cells and Development, vol. 18, no. 8, pp. 1115–1125, 2009.