The study was conducted on 20 adult healthy medium-sized mongrel dogs. Injection of dexamethasone @ 1?mg/kg, IV, b.i.d., was administered to create gastric ulcerations and erosions. Thereafter all the animals were randomly divided into 5 equal treatment groups. Animals of groups I, II, III, IV, and V were treated with oral administration of lansoprazole @ 1.5?mg/kg, sucralfate @ 1?g/animal, misoprostol @ 10?μg/kg, famotidine @ 1?mg/kg, and Seabuckthorn seed oil @ 5?mL/animal, twice a day, respectively. Gastroendoscopically, complete healing of GUE lesions was earliest in Seabuckthorn- (SBT-) oil-treated group ( ) followed by famotidine ( ), lansoprazole ( ), misoprostol ( ), and sucralfate ( ), respectively. A marked improvement in appetite was observed in all animals. Melena was continued till day 3 in SBT group, day 6 in lansoprazole- and famotidine-treated animals, and day 9 in sucralfate and misoprostol group animals. Fecal occult blood test was positive in all animals till there was endoscopic evidence of gastric bleeding. Hematological parameters improved markedly towards the end of the study. Serum biochemical parameters remained within normal physiological limits throughout the study. It is concluded that Seabuckthorn oil was the best therapeutic agent for dexamethasone-induced GUE in dogs followed by famotidine, lansoprazole, misoprostol, and sucralfate. 1. Introduction Gastric ulcerations and erosions (GUEs) are a well-known entity in veterinary medicine. The mucosal defect penetrating through the gastric muscularis mucosa is termed as “gastric ulcer,” whereas the superficial ulcer that does not extend far into the mucosa is termed as “gastric erosion.” But in routine clinical practice, it is difficult to differentiate between both conditions by all known diagnostic methods except histopathology. So this complex of gastric ulcerations and erosions is combined termed as GUE. In small animals, it develops mainly due to long-term administration of steroidal and nonsteroidal anti-inflammatory drugs (NSAIDs). Corticosteroids are ulcerogenic in dogs even at therapeutic doses [1]. Ulcerogenic activity of these drugs is attributed to their inhibitory effect on synthesis of prostaglandins, altering the biochemical structure of gastric mucous which increases acid output. This exposes the gastric wall to its own acids leading to GUE. Other potential causes of gastric ulceration in animals include neoplasia like lymphosarcoma, adenocarinomas, gastrinoma (Zollinger-Ellison syndrome), and mastocytosis, systemic diseases like hepatic and renal disease,
References
[1]
S. E. Boston, N. M. M. Moens, S. A. Kruth, and E. P. Southorn, “Endoscopic evaluation of the gastroduodenal mucosa to determine the safety of short-term concurrent administration of meloxicam and dexamethasone in healthy dogs,” American Journal of Veterinary Research, vol. 64, no. 11, pp. 1369–1375, 2003.
[2]
S. N. Tewari and A. K. Wilson, “Deglycyrrhizinated liquorice in duodenal ulcer,” Practitioner, vol. 210, no. 260, pp. 820–823, 1973.
[3]
K. Eamlamnam, S. Patumraj, N. Visedopas, and D. Thong-Ngam, “Effects of Aloe vera and sucralfate on gastric microcirculatory changes, cytokine levels and gastric ulcer healing in rats,” World Journal of Gastroenterology, vol. 12, no. 13, pp. 2034–2039, 2006.
[4]
A. Ray, S. R. Chaudhuri, B. Majumdar, and S. K. Bandyopadhyay, “Antioxidant activity of ethanol extract of rhizome of Picrorhiza kurroa on indomethacin induced gastric ulcer during healing,” Indian Journal of Clinical Biochemistry, vol. 17, no. 2, pp. 44–51, 2002.
[5]
S.-H. Chen, Y.-C. Liang, J. C. J. Chao et al., “Protective effects of Ginkgo biloba extract on the ethanol-induced gastric ulcer in rats,” World Journal of Gastroenterology, vol. 11, no. 24, pp. 3746–3750, 2005.
[6]
S. Kianbakht and K. Mozaffari, “Effects of saffron and its active constituents, crocin and safranal, on prevention of indomethacin induced gastric ulcers in diabetic and nondiabetic rats,” Journal of Medicinal Plants, vol. 8, no. 5, pp. 30–38, 2009.
[7]
S. Jaikumar, S. Ramaswamy, B. R. Asokan, T. Mohan, and M. Gnanavel, “Anti ulcer activity of methanolic extract of Jatropha curcas (Linn.) on Aspirin-induced gastric lesions in wistar strain rats,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 1, no. 4, pp. 886–897, 2010.
[8]
A. A. Rezq and M. M. Elmallh, “Anti-ulcer effect of cinnamon and chamomile aqueous Extracts in rat models,” Journal of American Science, vol. 6, no. 12, pp. 209–216, 2010.
[9]
J. Khalil, S. Akhter, S. A. Bhatti, et al., “Gastric ulcer healing effects of Nigella sativa: a comparative experimental study with cimetidine,” Biomedica, vol. 26, no. 25, pp. 61–65, 2010.
[10]
H. Süleyman, M. E. Büyükokuroglu, M. Koruk, F. Ak?ay, A. Kiziltun?, and A. Gepdiremen, “The effects of Hippophae rhamnoides L. extract on ethanol-induced gastric lesion and gastric tissue glutathione level in rats: a comparative study with melatonin and omeprazole,” Indian Journal of Pharmacology, vol. 33, no. 2, pp. 77–81, 2001.
[11]
X. Mingyu, S. Xiaoxuan, and C. Jinhua, “The medicinal research on seabuckthorn,” in Proceedings of the International Workshop on Seabuckthorn, New Delhi, India, 2001.
[12]
A. C. Varshney and S. P. Tyagi, “Studies on anti-inflammatory activities of seabuckthorn (Hippophae sp.) in canine,” pp. 14–17, Proceedings of the Asian Congress of Zoo and Wildlife Veterinarians, Lucknow, India, 2004.
[13]
T. J. Cheng, “Protective action of seed oil of Hippophae rhamnoides L. (HR) against experimental liver injury in mice,” Chinese Journal of Preventive Medicine, vol. 26, no. 4, pp. 227–229, 1992.
[14]
Z. Fengming, “Anti-arrhythmic effects of TFH on the extra corporeal cors,” Journal of Chinese Pharmacology, vol. 5, no. 1, pp. 44–47, 1989.
[15]
N. Kumar, Evaluation of the healing of infected cutaneous wounds following seabuckthorn (Hippophae rhamnoides.) oil application in calves [M.S. thesis], Department of Surgery and Radiology, COVAS, CSKHPKV, Palampur, India, 2004.
[16]
A. Kumar, Studies on the efficacy of seabuckthorn (Hippophae sp.) in the healing of burn wounds in bovines [M.S. thesis], Department of Surgery and Radiology, COVAS, CSKHPKV, Palampur, India, 2003.
[17]
S. P. Tyagi, Studies on the efficacy of Seabuckthorn (Hippophae Sp.) oil in the healing of gastric ulcers in dogs [Ph.D. thesis], Department of Veterinary Surgery and Radiology, COVAS, CSKHPKV, Palampur, India, 2006.
[18]
J. Xing, B. Yang, Y. Dong, B. Wang, J. Wang, and H. P. Kallio, “Effects of sea buckthorn (Hippopha? rhamnoides L.) seed and pulp oils on experimental models of gastric ulcer in rats,” Fitoterapia, vol. 73, no. 7-8, pp. 644–650, 2002.
[19]
S. P. Tyagi, “Utilization of Seabuckthorn in healing of gastric ulcer in dogs,” in Project Report of National Agricultural Innovation Project, 2009.
[20]
B. L. Oser, “Feces,” in Hawk’s Physiological Chemistry, B. L. Oser, Ed., pp. 530–540, Tata McGraw-Hill, New Delhi, India, 14th edition, 1965.
[21]
Z. Y. Jiang, D. H. Qian, and Y. Sai, “Effects of Seabuckthorn seed oil against gastric ulcer,” in Proceedings of the International Symposium on Seabuckthorn, pp. 294–295, Xian, China, 1989.
[22]
V. A. Mironov, T. N. Guseva-Donskaya, N. Amirov, et al., “New technology and pharmacology of Seabuckthorn oil production,” in Proceedings of the International Symposium on Seabuckthorn (Hippophae rhamnoides L.), pp. 348–349, Xian, China, 1989.
[23]
M. Xiao, Z. Yang, M. Liu, et al., “Research on the protective effects of b-sitosterol and its glucoside against experimental gastric ulcers in rats,” Academic Journal of Huaxi Medical University, vol. 23, no. 1, pp. 98–101, 1992.
[24]
Y. Zhou, J. Jiang, Y. Song, et al., “Research on the anti-gastric ulcer effect of Seabuckthorn seed oil,” Hippophae, vol. 7, no. 2, pp. 33–36, 1994.
[25]
X. P. Che, H. R. Huo, N. Zhao, et al., “Effects of Seabuckthorn seed oil on experimental gastric ulcers in rats,” Hippophae, vol. 11, no. 4, pp. 38–40, 1998.
[26]
X. Xu, B. Xie, S. Pan, L. Liu, Y. Wang, and C. Chen, “Effects of sea buckthorn procyanidins on healing of acetic acid-induced lesions in the rat stomach,” Asia Pacific Journal of Clinical Nutrition, vol. 16, no. 1, pp. 234–238, 2007.
[27]
G. Q. Qiu and X. Qiao, “A preliminary report on the clinical treatment of thirty cases of peptic ulcer with Seabuckthorn oil capsules,” Hippophae, vol. 10, no. 4, pp. 39–41, 1997.
[28]
V. A. Nikitin, A. A. Chistyakov, and V. I. Bugaeva, “Therapeutic endoscopy in the complex of measures for gastroduodenal ulcer management,” Khirurgiya, vol. 65, no. 4, pp. 33–35, 1989.
[29]
Y. B. Ji and Y. Gao, “Effect of feeding Seabuckthorn seed oil and Seabuckthorn seed oil fortified with sodium selenite in vivo on Na-K-ATPase activity in erythrocyte ghost in rats,” Acta Nutrimenta Sinica, vol. 13, no. 1, pp. 20–24, 1991.
[30]
D. T. S. Tsybikova, N. N. Feddtdvskaya, G. Z. H. Darzhapova, et al., “Chemical and pharmacological characteristics of fat-soluble compounds in Seabuckthorn press residue,” in Advances in the Biochemical and Pharmacological Research on Seabuckthorn, pp. 141–142, Wugong Publishing House, Wugong, Shannxi Province, China, 1992.
[31]
Z. H. Song and Y. Gao, “Effect of sea buckthorn oil and vitamin E on the lipid peroxidation of rats after cold exposure,” Acta Mutrimenta Sinica, vol. 17, no. 1, pp. 27–31, 1995.
[32]
H. Kallio and Y. Baoru, “Effects of Seabuckthorn (Hippophae rhamnoides L.) oil on the mucosa and skin,” in Seabuckthorn (Hippophae L.) A Multipurpose Wonder Plant: Biochemistry and Pharmacology, V. Singh, Ed., vol. 2, pp. 86–90, Daya Publishing House, New Delhi, India, 2005.
[33]
B. Wallmark, P. Lorentzon, and H. Larsson, “The mechanism of action of omeprazole-a survey of its inhibitory actions in vivo,” Scandinavian Journal of Gastroenterology, Supplement, vol. 20, supplement 108, pp. 37–51, 1985.
[34]
C. C. Jenkins, R. C. DeNovo, C. S. Patton, R. M. Bright, and B. W. Rohrbach, “Comparison of effects of cimetidine and omeprazole on mechanically created gastric ulceration and on aspirin-induced gastritis in dogs,” American Journal of Veterinary Research, vol. 52, no. 5, pp. 658–661, 1991.
[35]
C. C. Jenkins and R. C. DeNovo, “Omeprazole: a potent antiulcer drug,” Compendium on Continuing Education For the Practicing Veterinarians, vol. 13, pp. 1579–1582, 1991.
[36]
S. R. McClure, G. W. White, R. L. Sifferman et al., “Efficacy of omeprazole paste for prevention of recurrence of gastric ulcers in horses in race training,” Journal of the American Veterinary Medical Association, vol. 226, no. 10, pp. 1685–1688, 2005.
[37]
R. Colucci, M. Fornai, L. Antonioli et al., “Characterization of mechanisms underlying the effects of esomeprazole on the impairment of gastric ulcer healing with addition of NSAID treatment,” Digestive and Liver Disease, vol. 41, no. 6, pp. 395–405, 2009.
[38]
J. Hotz, R. Kleinert, T. Grymbowski, U. Hennig, and J. A. Schwarz, “Lansoprazole versus famotidine: efficacy and tolerance in the acute management of duodenal ulceration,” Alimentary Pharmacology and Therapeutics, vol. 6, no. 1, pp. 87–95, 1992.
[39]
A. T. Borne and C. G. MacAllister, “Effect of sucralfate on healing of subclinical gastric ulcers in foals,” Journal of the American Veterinary Medical Association, vol. 202, no. 9, pp. 1465–1468, 1993.
[40]
S. D. Gilson, B. B. Parker, and D. C. Twedt, “Evaluation of two commercial test kits for detection of occult blood in feces of dogs,” American Journal of Veterinary Research, vol. 51, no. 9, pp. 1385–1387, 1990.
[41]
C. R. Rohrer, R. C. Hill, A. Fischer et al., “Gastric hemorrhage in dogs given high doses of methylprednisolone sodium succinate,” American Journal of Veterinary Research, vol. 60, no. 8, pp. 977–981, 1999.
[42]
R. T. Jensen, D. C. Metz, P. D. Koviack, and K. M. Feigenbaum, “Prospective study of the long-term efficacy and safety of lansoprazole in patients with the Zollinger-Ellison syndrome,” Alimentary Pharmacology and Therapeutics, Supplement, vol. 7, supplement 1, pp. 41–50, 1993.
[43]
E. Hentschel, K. Schütze, and W. Dufek, “Controlled comparison of sucralfate and cimetidine in duodenal ulcer,” Scandinavian Journal of Gastroenterology, Supplement, vol. 83, pp. 31–35, 1983.
[44]
P. Robinson and P. D. Sly, “Placebo-controlled trial of misoprostol in cystic fibrosis,” Journal of Pediatric Gastroenterology and Nutrition, vol. 11, no. 1, pp. 37–40, 1990.