全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Aniridia in Two Related Tennessee Walking Horses

DOI: 10.1155/2013/703732

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aniridia in horses is rare and has previously been reported to be genetically transmitted in Belgian horses and Quarter horses. This paper describes the defect in 2 related Tennessee Walking horses, with special reference to new findings regarding the molecular genetics of ocular development and how they might relate to equine aniridia. In addition to aniridia, these 2 horses possessed additional ocular abnormalities including cataracts and dermoid lesions. Euthanasia was elected, and the eyes were examined histologically. Iris hypoplasia, atypical dermoids, and cataracts were confirmed in both horses. Due to the heritability of aniridia in horses, breeding of affected animals is not recommended. 1. Introduction Aniridia is a rare condition marked by partial or complete absence of the iris. This condition has been reported in horses [6–11], cattle [1], laboratory animals [2, 3], and humans [4, 5]. In Belgian horses [6] and Quarter horses [7], the defect has been reported to be genetically transmitted as an autosomal dominant trait, but at least one case in a Swedish Warmblood was not dominantly inherited [8]. In humans, the anomaly either presents as a familial condition with autosomal-dominant inheritance or is sporadic [4, 5]. Affected animals are usually photophobic with absent direct and indirect pupillary light responses bilaterally, and they often have additional ocular abnormalities including dermoid lesions and cataracts. Dermoid lesions, like many instances of aniridia, form during foetal development, and our understanding of the molecular genetics of ocular development has improved since the last case report of aniridia in horses [8]. Therefore, the purpose of this report is to describe the clinical and histologic features of aniridia in 2 related Tennessee Walking horses, especially considering “new” information about the genetics of ocular involvement. 2. Case Presentation Two Tennessee Walking horses were presented to the University of Tennessee Equine Hospital for bilateral ocular abnormalities. Horse A was a 15-year-old mare, and horse B was her 12-month-old female offspring. Very limited history was available because both animals were rescued. Visual deficits had been recognized in both animals prior to presentation, and the new owners had noticed bilateral ocular opacities in both horses. On ophthalmic examination of horse A, both direct and indirect pupillary light responses were absent in both eyes. However, the horse did have positive menace responses bilaterally. The tips of the ciliary processes were visible in both eyes, and the

References

[1]  L. Z. Saunders and M. G. Fincher, “Hereditary multiple eye defects in grade Jersey calves,” The Cornell Veterinarian, vol. 41, no. 4, pp. 351–366, 1951.
[2]  T. Glaser, J. Lane, and D. Housman, “A mouse model of the aniridia-Wilms tumor deletion syndrome,” Science, vol. 250, no. 4982, pp. 823–827, 1990.
[3]  T. Glaser, D. S. Walton, and R. L. Maas, “Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene,” Nature Genetics, vol. 2, no. 3, pp. 232–239, 1992.
[4]  H. Kokotas and M. B. Petersen, “Clinical and molecular aspects of aniridia,” Clinical Genetics, vol. 77, no. 5, pp. 409–420, 2010.
[5]  H. Lee, R. Khan, and M. O'keefe, “Aniridia: current pathology and management,” Acta Ophthalmologica, vol. 86, no. 7, pp. 708–715, 2008.
[6]  K. Eriksson, “Hereditary aniridia with secondary cataract in horses,” Nordisk Veterinaermedicin, vol. 7, pp. 773–779, 1955.
[7]  J. R. Joyce, J. E. Martin, R. W. Storts, and L. Skow, “Iridial hypoplasia (aniridia) accompanied by limbic dermoids and cataracts in a group of related quarterhorses,” Equine Veterinary Journal, vol. 22, no. 10, pp. 26–28, 1990.
[8]  N. H?kanson, “Irishypoplasi hos h?st,” Svensk Veterin?rtidning, vol. 45, pp. 99–103, 1993.
[9]  J. Joyce, “Aniridia in a Quarter horse,” Equine Veterinary Journal, vol. 15, no. 2, pp. 21–22, 1983.
[10]  Y. Ueda, “Aniridia in a thoroughbred horse,” Equine Veterinary Journal, vol. 22, no. 10, p. 29, 1990.
[11]  N. L. Irby and G. D. Aguirre, “Congenital aniridia in a pony,” Journal of the American Veterinary Medical Association, vol. 186, no. 3, pp. 281–283, 1985.
[12]  C. S. Cook, “Ocular embryology and congenital malformations,” in Veterinary Ophthalmology, K. N. Gelatt, Ed., pp. 3–36, Blackwell Publishing, Ames, Iowa, USA, 4th edition, 2007.
[13]  G. R. Beauchamp and D. M. Meisler, “An alternative hypothesis for iris maldevelopment (aniridia),” Journal of Pediatric Ophthalmology and Strabismus, vol. 23, no. 6, pp. 281–283, 1986.
[14]  A. Cvekl, C. M. Sax, E. H. Bresnick, and J. Piatigorsky, “A complex array of positive and negative elements regulates the chicken αA-crystallin gene: Involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins,” Molecular and Cellular Biology, vol. 14, no. 11, pp. 7363–7376, 1994.
[15]  D. C. Baulmann, A. Ohlmann, C. Flügel-Koch, S. Goswami, A. Cvekl, and E. R. Tamm, “Pax6 heterozygous eyes show defects in chamber angle differentiation that are associated with a wide spectrum of other anterior eye segment abnormalities,” Mechanisms of Development, vol. 118, no. 1-2, pp. 3–17, 2002.
[16]  D. T. Ramsey, S. L. Ewart, J. A. Render, C. S. Cook, and C. A. Latimer, “Congenital ocular abnormalities of Rocky Mountain Horses,” Veterinary Ophthalmology, vol. 2, no. 1, pp. 47–59, 1999.
[17]  S. L. Ewart, D. T. Ramsey, J. Xu, and D. Meyers, “The horse homolog of congenital aniridia conforms to codominant inheritance,” Journal of Heredity, vol. 91, no. 2, pp. 93–98, 2000.
[18]  J. Davis and J. Piatigorsky, “Overexpression of Pax6 in mouse cornea directly alters corneal epithelial cells: changes in immune function, vascularization, and differentiation,” Investigative Ophthalmology & Visual Science, vol. 52, no. 7, pp. 4158–4168, 2011.
[19]  A. Cvekl, Y. Yang, B. K. Chauhan, and K. Cveklova, “Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens,” International Journal of Developmental Biology, vol. 48, no. 8-9, pp. 829–844, 2004.
[20]  F. Tremblay, S. K. Gupta, I. de Becker, D. L. Guernsey, and P. E. Neumann, “Effects of PAX6 mutations on retinal function: an electroretinographic study,” American Journal of Ophthalmology, vol. 126, no. 2, pp. 211–218, 1998.
[21]  W. H. Spencer and L. E. Zimmerman, “Conjunctiva,” in Ophthalmic Pathology: An Atlas and Textbook, W. H. Spencer, Ed., vol. 1, pp. 109–228, WB Saunders, Philadelphia, Pa, USA, 3rd edition, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133