全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impurities Effect on Carbonate Reactive Crystallization for the Wastewater

DOI: 10.1155/2013/984163

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reactive crystallization designed to separate nickel or copper ion from effluents has been advanced for applying to actual industrial wastewater containing impurities. In the primary reaction of this method, metal sulfate solution reacts with sodium carbonate solution in a semibatch crystallizer. In the present study, during the process of nickel or copper ions incorporation, inhibitory effect on seed growth of impurities, like cobalt, manganese, zinc, and borate and phosphate ions, was investigated. Through the 8-hour reactive crystallization, obtained particles’ characters and metals removal efficient were examined. Considering analyses data on metal component ratio in produced crystals, metal ions initial uptake rate was found to be different by the kind of seeds and impurities. And the centrifugation was performed against obtained crystals aimed for examining target metal purity improvement. The results indicated that copper components can incorporate and remove other metal ions easily. In addition, when the anions are used as impurities, depending on the kind of anions, the effect of damaging the surface of seeds or producing many fine particles has been confirmed. 1. Introduction Metal ions in the wastewater have often been treated by coagulation and precipitation methods [1]. In this treatment, however, a large amount of sludge is produced and metal substances are disposed without recycling. Meanwhile, wastewater treatment technologies based on environmental crystallization have an advantage in collecting metal ions as solid crystals. For example, studies about metal ion separation and precipitation methods with the use of a fluidized bed reactor have been preceded [2–4]. Some metal ions were shown to be taken efficiently on seeds such as quartz-sands at an optimum pH. And in our recent report [5], in a study using semibatch crystallizer, we suggested that metal ions were recovered on seeds regularly and continuously at only particular seed inputs. Actually, in the industrial effluent, many kinds of metal ions are contained typically. Metal ions uptake mechanism somewhat relates to the adsorption or coprecipitation process. Some have found the order of metal ions adsorption strength to some base seeds [6–8], and others have examined the pH range at which metal ions can be selectively separated efficiently with the use of difference of solubility products in the process of co-precipitation [9, 10]. Thereby, in this paper, on the basis of nickel or copper ions crystallization in the regulated solution, seeds growth inhibition mechanisms by the

References

[1]  J. G. Dean and F. L. Bosqui, “Removing heavy metals from waste water,” Environmental Science and Technology, vol. 6, no. 6, pp. 518–522, 1972.
[2]  C. I. Lee and W. F. Yang, “Heavy metal removal from aqueous solution in sequential fluidized-bed reactors,” Environmental Technology, vol. 26, no. 12, pp. 1345–1353, 2005.
[3]  V. C. T. Costodes and A. E. Lewis, “Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor: fines production and column design,” Chemical Engineering Science, vol. 61, no. 5, pp. 1377–1385, 2006.
[4]  R. P. van Hille, K. A. Peterson, and A. E. Lewis, “Copper sulphide precipitation in a fluidised bed reactor,” Chemical Engineering Science, vol. 60, no. 10, pp. 2571–2578, 2005.
[5]  Y. Shimizu and I. Hirasawa, “Effect of seeding on metal Ion recovery from wastewater by reactive crystallization of metal carbonates,” Chemical Engineering & Technology, vol. 35, no. 9, pp. 1588–1592, 2012.
[6]  I. Uzun and F. Guzel, “Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents,” Turkish Journal of Chemistry, vol. 24, pp. 291–297, 2000.
[7]  S. A. El-Korashy, “Studies on divalent ion uptake of transition metal cations by calcite through crystallization and cation exchange process,” Journal of Materials Science, vol. 38, no. 8, pp. 1709–1719, 2003.
[8]  S. K. Handona and U. A. Al Hadad, “Crystallization of calcium sulfate dihydrate in the presence of some metal ions,” Journal of Crystal Growth, vol. 299, no. 1, pp. 146–151, 2007.
[9]  K. Soya, N. Mihara, D. Kuchar, M. Kubota, H. Matsuda, and T. Fukuta, “Use of caffeine and human pharmaceutical compounds to identify sewage contamination,” International Journal of Civil and Environmental Engineering, vol. 2, no. 2, pp. 93–97, 2010.
[10]  T. Fukuta, T. Ito, K. Sawada, Y. Kojima, H. Matsuda, and K. Yagishita, “Improvement of nickel-precipitation from aqueous nickel solution by sulfuration with sodium sulfides,” Journal of Chemical Engineering of Japan, vol. 36, no. 4, pp. 493–498, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133