全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Liquefaction-Induced Lateral Deformations Computational Assessment during Tohoku Earthquake

DOI: 10.1155/2013/408961

Full-Text   Cite this paper   Add to My Lib

Abstract:

Liquefaction-induced lateral spreading during Tohoku earthquake resulted in significant damage, and disruption of functionality for structures and life. The paper aims at reproducing this on-site evidence presenting the state of the art about the most credited qualitative approach and comparing these methods with numerical computation. In this regard, finite element (FE) simulations are increasingly providing a versatile environment in order to assess economical and effective damage. In the study, several systematic three-dimensional FE computations have been conducted to numerically evaluate the effects in terms of liquefaction-induced lateral deformations. The analysis is performed in correspondence with Urayasu City, where the registered liquefaction consequences on residential buildings were wide if compared with the ordinary seismic shake. This study can be used both for post-earthquake evaluations and for pre-earthquake vulnerability predictions. 1. Introduction The 11th of March 2011 (05:46:24.51 UTC) Tohoku Earthquake can be considered the largest ( 9.0-9.1) in the recent history of Japan and one of the five largest earthquakes of the modern era (United States Geological Survey’s USGS). The earthquake excited a large tsunami that devastated coastal communities in Japan. The most sites affected by liquefaction-induced deformations are inside the named Kanto Plate, a very recent zone with alluvial formations on which many Japanese cities stand. The main effects of liquefaction-induced ground failures were observed around the northern and north-eastern shorelines of Tokyo Bay (e.g., Shin Kiba, Urayasu, Inage, Kaihin Makuhari, Chiba, Isobe, and Mihama), communities along the river Tone (Choshi, Sawara, Itako, Katori, and Kamisu), and areas along the Naka River including Hitachinaka, Miko, and Oarai [1–6]. In particular, the main damages were observed in the Kanto Plain region at many urban cities, which includes the Tokyo Bay and Tone River areas. The liquefied soils were fill materials or young alluvium [5]. Lateral spreading consisted of the development of large horizontal ground displacements due to earthquake-induced liquefaction. This phenomenon resulted in significant damage and considerable replacement costs for existing buildings and civil engineering structures (quay walls, bridge piers, etc.) since it imposed notable lateral loads and may lead to widespread failures. Such adverse response was previously documented during several seismic events, such as the earthquakes of Niigata, Japan (1964, [7–10]), Dagupan City, Philippines (1990,

References

[1]  National Research Institute for earth Science and Disaster Prevention (NIED) Japan, 2011 Off the Pacific Coast of Tohoku earthquake, Strong Ground Motion.
[2]  I. Towhata, H. Goto, M. Kazama et al., “NEWS on Gigantic Tohoku Pacific Earthquake in Japan,” April Issue of ISSMGE Bulletin, 2011.
[3]  J. Meneses and P. Arduino, Preliminary Observations of the Effects of Ground Failure and Tsunami on the Major Ports of Ibaraki Prefecture, May 17, 2011, Geotechnical Extreme Events Reconnaissance (GEER).
[4]  S. Bhattacharya, M. Hyodo, K. Goda, T. Tazoh, and C. A. Taylor, “Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 11, pp. 1618–1628, 2011.
[5]  S. A. Ashford, R. W. Boulanger, J. L. Donahue, and J. P. Stewart, “Geotechnical Quick Report on the Kanto Plain Region during the March 11, 2011, Off Pacific Coast of Tohoku Earthquake, Japan,” GEER Association Report No GEER-025a, Geotechnical Extreme Events Reconnaissance (GEER), 2011.
[6]  K. Tokimatsu and K. Katsumata, “Liquefaction-induced damage to buildings in Urayasu city during the 2011 Tohoku Pacific earthquake,” in Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, March 2012.
[7]  H. Kishida, “Damage to reinforced concrete buildings in Niigata city with special reference to foundation engineering,” Soils Foundation, vol. 6, no. 1, pp. 71–88, 1966.
[8]  Y. Ohsaki, “Niigata earthquake, 1964 building damage and soil condition,” Soils Foundations, vol. 6, no. 2, pp. 14–37, 1966.
[9]  H. B. Seed and I. M. Idriss, “Analysis of soil liquefaction: niigata earthquake,” Journal of Soil Mechanics and Foundations, vol. 93, no. 3, pp. 83–108, 1967.
[10]  Y. Yoshimi and K. Tokimatsu, “Settlement of buildings on saturated sand during earthquakes,” Soils and Foundations, vol. 17, no. 1, pp. 23–38, 1977.
[11]  K. Tokimatsu, S. Midorikawa, S. Tamura, S. Kuwayama, and A. Abe, “Preliminary report on the geotechnical aspects of the Philippine earthquake of July 16, 1990,” in Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 357–364, University of Missouri-Rolla, St. Louis, Mo, USA, 1991.
[12]  T. Adachi, S. Iwai, M. Yasui, and Y. Sato, “Settlement of inclination of reinforced concrete buildings in Dagupan city due to liquefaction during 1990 Philippine earthquake,” in Proceedings of the 10th World Conference on Earthquake Engineering, pp. 147–152, Balkema, Rotterdam, The Netherlands, 1992.
[13]  K. Ishihara, A. A. Acacio, and I. Towhata, “Liquefaction-induced ground damage in Dagupan in the July 16, 1990 Luzon earthquake,” Soils and Foundations, vol. 33, no. 1, pp. 133–154, 1993.
[14]  K. Tokimatsu, H. Kojimaa, S. Kuwayama, A. Abe, and S. Midorikawa, “Liquefaction-induced damage to buildings in 1990 Luzon Earthquake,” Journal of Geotechnical Engineering, vol. 120, no. 2, pp. 290–307, 1994.
[15]  Earthquake Engineering Research Institute (EERI), “Kocaeli. Turkey, earthquake of august 17, 1999 reconnaissance report,” Earthquake Spectra, 2000.
[16]  Earthquake Engineering Research Institute (EERI), “Chi-chi, Taiwan, earthquake of September 21, 1999, reconnaissance report,” Earthquake Spectra, 2001.
[17]  J. H. Schmertmann, “Measurement of In-Situ strength,” in Proceedings of the Conference on In-Situ Measurement of Soil Properties, pp. 55–138, American Society of Civil Engineers, 1975.
[18]  J. H. Schmertmann, J. P. Hartmann, and P. R. Brown, “Improved strain influence factor diagrams,” Journal of the Geotechnical Engineering Division, ASCE, vol. 104, no. 8, pp. 1131–1135, 1978.
[19]  A. R. S. S. Bazaraa, Use of the standard penetration test for estimating settlements of shallow foundations on sand [Ph.D. thesis], University of Illinois, Champaign-Urbana, Ill, USA, 1967.
[20]  H. J. Gibbs and W. G. Holtz, “Research on determining the density of sands by spoon penetration testing,” in Proceedings of the 4th International Conference on Soil Mechanics, vol. 1, pp. 35–39, London, UK, 1957.
[21]  M. A. Sherif, I. Ishibashi, and C. Tsuchiya, “Pore pressure prediction during Earthquake Loadings,” Soils and Foundations, vol. 18, no. 4, pp. 19–30, 1978.
[22]  T. L. Youd and D. M. Perkins, “Mapping liquefaction-induced ground failure potential,” Journal of the Geotechnical Engineering Division, ASCE, vol. 104, no. 4, pp. 433–446, 1978.
[23]  H. B. Seed and I. M. Idriss, “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Geotechnical Engineering Division, ASCE, vol. 97, no. 9, pp. 1249–1273, 1971.
[24]  H. B. Seed and I. M. Idriss, Ground Motions and Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute Monograph, Oakland, Calif, USA, 1982.
[25]  M. K. Yegian and R. V. Withman, “Risk analysis for ground failure by liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, vol. 104, no. GT7, pp. 921–938, 1978.
[26]  K. Tokimatsu and Y. Yoshimi, “Empirical correlation of soil liquefaction based on SPT N-value and fines content,” Soils and Foundations, vol. 23, no. 4, pp. 56–74, 1983.
[27]  T. Iwasaki, T. Arakawa, and K.-I. Tokida, “Simplified procedures for assessing soil liquefaction during earthquakes,” International Journal of Soil Dynamics and Earthquake Engineering, vol. 3, no. 1, pp. 49–58, 1984.
[28]  T. Iwasaki, F. Tatsuoka, K. Tokida, and S. Yasuda, “A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan,” in Proceedings of the 2nd International Conference on Microzonation for Safer Construction—Research and Application, pp. 885–896, San Francisco, Calif, USA, December 1978.
[29]  H. B. Seed, K. Tokimatsu, L. F. Harder, and R. M. Chung, “The influence of SPT procedures in soil liquefaction resistance evaluations,” Journal of Geotechnical Engineering, vol. 111, no. 12, pp. 1425–1445, 1985.
[30]  R. D. Andrus and K. H. Stokoe II, “Liquefaction resistance based on shear wave velocity,” in Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, National Conference for Earthquake Engineering Research, pp. 89–128, State University of New York at Buffalo, 1997.
[31]  T. Crespellani, R. Nardi, and C. Simoncini, La liquefazione del terreno in condizioni sismiche, Zanichelli, 1988.
[32]  S. G. Monaco, Liquefazione dei terreni in condizioni sismiche, EPC libri, 2008.
[33]  Eurocode 8 (UNI EN, 1998-5:2005), part 5, appendix B.
[34]  T. L. Youd and I. M. Idriss, “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, no. 4, pp. 297–313, 2001.
[35]  S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, “Open System for Earthquake Engineering Simulation, User Command-Language Manual,” Pacific Earthquake Engineering Research Center, University of California, Berkeley, OpenSees version 2.0, 2009, http://opensees.berkeley.edu.
[36]  A. H. C. Chan, A unified finite element solution to static and dynamic problems in geomechanics [Ph.D. thesis], University College of Swansea, Swansea, UK, 1988.
[37]  O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, D. K. Paul, and T. Shiomi, “Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems,” Proceedings of Royal Society of London A, vol. 429, no. 1877, pp. 285–309, 1990.
[38]  J. H. Prevost, “A simple plasticity theory for frictional cohesionless soils,” International Journal of Soil Dynamics and Earthquake Engineering, vol. 4, no. 1, pp. 9–17, 1985.
[39]  E. Parra, Numerical modelling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems [Ph.D. thesis], Department of Civil Engineering, Renseealear Polytechnic Institute Troy, Troy, NY, USA, 1996.
[40]  Z. Yang, Numerical modeling of earthquake site response including dilation and liquefaction [Ph.D. thesis], Columbia University, New York, NY, USA, 2000.
[41]  Z. Yang and A. Elgamal, “Influence of permeability on liquefaction-induced shear deformation,” Journal of Engineering Mechanics, vol. 128, no. 7, pp. 720–729, 2002.
[42]  Z. Yang, A. Elgamal, and E. Parra, “Computational model for cyclic mobility and associated shear deformation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 129, no. 12, pp. 1119–1127, 2003.
[43]  A. Elgamal, E. Parra, Z. Yang, and K. Adalier, “Numerical analysis of embankment foundation liquefaction countermeasures,” Journal of Earthquake Engineering, vol. 6, no. 4, pp. 447–471, 2002.
[44]  A. Elgamal, Z. Yang, E. Parra, and A. Ragheb, “Modeling of cyclic mobility in saturated cohesionless soils,” International Journal of Plasticity, vol. 19, no. 6, pp. 883–905, 2003.
[45]  A. Elgamal, J. Lu, and D. Forcellini, “Mitigation of liquefaction-induced lateral deformation in a sloping stratum: three-dimensional numerical simulation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 135, no. 11, pp. 1672–1682, 2009.
[46]  D. Forcellini and A. M. Tarantino, “Countermeasures assessment of liquefaction-induced lateral deformation in a slope ground system,” Journal of Engineering, vol. 2013, Article ID 183068, 9 pages, 2013.
[47]  J. Lu, A. Elgamal, and Z. Yang, OpenSeesPL: 3D Lateral Pile-Ground Interaction, User Manual, Beta 1.0, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133