全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonconvex Compressed Sampling of Natural Images and Applications to Compressed MR Imaging

DOI: 10.5402/2012/982792

Full-Text   Cite this paper   Add to My Lib

Abstract:

There have been proposed several compressed imaging reconstruction algorithms for natural and MR images. In essence, however, most of them aim at the good reconstruction of edges in the images. In this paper, a nonconvex compressed sampling approach is proposed for structure-preserving image reconstruction, through imposing sparseness regularization on strong edges and also oscillating textures in images. The proposed approach can yield high-quality reconstruction as images are sampled at sampling ratios far below the Nyquist rate, due to the exploitation of a kind of approximate ? 0 seminorms. Numerous experiments are performed on the natural images and MR images. Compared with several existing algorithms, the proposed approach is more efficient and robust, not only yielding higher signal to noise ratios but also reconstructing images of better visual effects. 1. Introduction In the past several decades, image compression [1, 2] and superresolution [3, 4] have been the primary techniques to alleviate the storage/transmission burden in image acquisition. As for image compression, it is known that, however, the compression-and-then-decompression scheme is not economical [5]. Though superresolution is capable of economically reconstructing high-resolution images to subpixel precision from multiple low-resolution images of the similar view, subpixel shifts have to be estimated in advance. It is a pity that accurate motion estimation is not an easy job for superresolution, thus resulting in a possible compromise of image quality (e.g., spatial resolution, signal to noise ratio (SNR)). Recently, a novel sampling theory, called compressed sensing or compressive sampling (CS) [5–9], asserts that one can reconstruct signals from far fewer samples or measurements than traditional sampling methods use. The emergence of CS has offered a great opportunity to economically acquire signals or images even as the sampling ratio is significantly below the Nyquist rate. In fact, CS has become one of the hottest research topics in the field of signal processing. Though there have been many relevant results on encoding and decoding of sparse signals, our focus in this paper is mainly on the compressed sampling of natural images and its applications to magnetic resonance imaging (MRI) reconstruction. Recently, there have been proposed several algorithms for compressed imaging reconstruction (e.g., [6, 11–17]). In essence, each of them solves a minimization problem of single ? 1 norm or total variation (TV) or their combination either directly or asymptotically, and the

References

[1]  A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 36–58, 2001.
[2]  T. Acharya and P. S. Tsai, JPEG 2000 Standard for Image Compression, John Wiley & Sons, Hoboken, NJ, USA, 2005.
[3]  A. K. Katsaggelos, R. Molina, and J. Mateos, Super-Resolution of Images and Videos, Morgan and Claypool, 2007.
[4]  S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21–36, 2003.
[5]  E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
[6]  E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.
[7]  E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006.
[8]  E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.
[9]  E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Problems, vol. 23, no. 3, article no. 008, pp. 969–985, 2007.
[10]  E. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for L1-regularized minimization with applications to compressed sensing,” Tech. Rep., Rice University, 2007.
[11]  S. Ma, W. Yin, Y. Zhang, and A. Chakraborty, “An efficient algorithm for compressed MR imaging using total variation and wavelets,” in Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08), pp. 1–8, June 2008.
[12]  K. T. Block, M. Uecker, and J. Frahm, “Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint,” Magnetic Resonance in Medicine, vol. 57, no. 6, pp. 1086–1098, 2007.
[13]  M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.
[14]  C. Y. Jong, S. Tak, Y. Han, and W. P. Hyun, “Projection reconstruction MR imaging using FOCUSS,” Magnetic Resonance in Medicine, vol. 57, no. 4, pp. 764–775, 2007.
[15]  H. Jung, J. C. Ye, and E. Kim, “Improved k-t BLAST and k-t SENSE using FOCUSS,” Physics in Medicine and Biology, vol. 52, no. 11, article 018, pp. 3201–3226, 2007.
[16]  M. Seeger and H. Nickisch, “Compressed sensing and Bayesian experimental design,” in Proceedings of the 25th International Conference on Machine Learning, pp. 912–919, July 2008.
[17]  J. Yang, Y. Zhang, and W. Yin, “A fast TVL1-L2 minimization algorithm for signal reconstruction from partial Fourier data,” Tech. Rep., Rice University, 2009.
[18]  R. Chartrand, “Exact reconstruction of sparse signals via nonconvex minimization,” IEEE Signal Processing Letters, vol. 14, no. 10, pp. 707–710, 2007.
[19]  E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9-10, pp. 589–592, 2008.
[20]  S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-scale L1-regularized least squares problems with applications in signal processing and statistics,” Tech. Rep., Stanford University, 2007.
[21]  I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, 2004.
[22]  M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 4, pp. 586–597, 2007.
[23]  I. Daubechies, R. DeVore, M. Fornasier, and S. Güntürk, “Iteratively Re-weighted Least Squares minimization: proof of faster than linear rate for sparse recovery,” In Proceedings of the 42nd Annual Conference on Information Sciences and Systems, pp. 26–29, 2008.
[24]  E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted?1 minimization,” Journal of Fourier Analysis and Applications, vol. 14, no. 5-6, pp. 877–905, 2008.
[25]  S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2346–2356, 2008.
[26]  S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Bayesian compressive sensing using laplace priors,” IEEE Transactions on Image Processing, vol. 19, no. 1, Article ID 5256324, pp. 53–63, 2010.
[27]  J. L. Starck, M. Elad, and D. L. Donoho, “Image decomposition via the combination of sparse representations and a variational approach,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1570–1582, 2005.
[28]  Y. Meyer, Oscillating Patterns in IImage Processing and Nonlinear Evolution Equation, vol. 22 of University Lecture Series, American Mathematical Society, 2001.
[29]  R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872, April 2008.
[30]  G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer, New York, NY, USA, 2000.
[31]  E. Esser, X. Zhang, and T. Chan, “A general framework for a class of first order primal-dual algorithms for TV minimization,” Tech. Rep., UCLA, 2009.
[32]  E. J. Candès and M. B. Wakin, “An introduction to compressive sampling: a sensing/sampling paradigm that goes against the common knowledge in data acquisition,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133