全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2013 

Using Multispectral Spaceborne Imagery to Assess Mean Tree Height in a Dryland Plantation

DOI: 10.1155/2013/485264

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study presents an approach for low-cost mapping of tree heights at the landscape level. The proposed method integrates parameters related to landscape (slope, orientation, and topographic height), tree size (crown diameter), and competition (crown competition factor and age), and determines the mean stand tree height as a function of tree competitive capability. The model was calibrated and validated against a standard inventory dataset collected over a dryland planted forest in the eastern Mediterranean region. The validation of the model shows a high and significant level of correlation between measured and modeled datasets ( ; ), with almost negligible (less than 1?m) levels of absolute and relative errors. The validated model was implemented for mapping mean tree height on a per-pixel basis by using high-spatial-resolution satellite imagery. The resulting map was, in turn, validated against an independent dataset of ground measurements. The presented approach could help to reduce the need for fieldwork in compiling single-tree-based inventories and to apply surface-roughness properties to hydrometeorological studies and regional energy/water-balance evaluation. 1. Introduction Tree height is considered to be a useful structural variable in estimating wood volumes, biomass, carbon stocks, and productivity of forest stands. It also determines the light penetration into the forest canopy and is of importance for certain habitat studies. In addition, tree height plays an essential role in micrometeorological research and global climate modeling by determining forest aerodynamic roughness (i.e., zero-plane displacement and roughness length) and affecting the transport of energy and substances between the land surface and the atmosphere boundary layer [1]. Therefore, the computation and mapping of tree-height distribution in a widespread area becomes a key step in characterizing the land-surface physical processes. Although the relationship between vegetation structure and surface reflectance obtained from satellite observation has been a focus of a great deal of research, the evaluation of mean tree height is still one of the main challenges for remote sensing applications. The most frequently used remote sensing techniques that are relevant to evaluation of tree height are automated photogrammetry (e.g., [2]); airborne ranging radar (e.g., [3]); and laser altimetry (e.g., [4–6]). Since these methods are mainly based on airborne platforms, the data collected by them is naturally of high resolution, and usually enables observation of an individual

References

[1]  D. Sellier, Y. Brunet, and T. Fourcaud, “A numerical model of tree aerodynamic response to a turbulent airflow,” Forestry, vol. 81, no. 3, pp. 279–297, 2008.
[2]  G. Zagalikis, A. D. Cameron, and D. R. Miller, “The application of digital photogrammetry and image analysis techniques to derive tree and stand characteristics,” Canadian Journal of Forest Research, vol. 35, no. 5, pp. 1224–1237, 2005.
[3]  S. R. Cloude and K. P. Papathanassiou, “Polarimetric SAR interferometry,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 5, pp. 1551–1565, 1998.
[4]  C. H. Hug and A. Wehr, “Detecting and identifying topographic objects in imaging laser altimetry data,” International Archives of Photogrammetry and Remote Sensing, vol. 32, part 3-4W2, pp. 19–26, 1997.
[5]  K. Kraus and W. Rieger, “Processing of laser scanning data for wooded areas,” in Photogrammetric Week 1999, D. Fritsch and R. Spiller, Eds., pp. 221–231, Wichmann, Heidelberg, Germany, 1999.
[6]  J. A. B. Rosette, P. R. J. North, and J. C. Suárez, “Vegetation height estimates for a mixed temperate forest using satellite laser altimetry,” International Journal of Remote Sensing, vol. 29, no. 5, pp. 1475–1493, 2008.
[7]  S. N. Coward and D. L. Williams, “Landsat and earth systems science: development of terrestrial monitoring,” Photogrammetric Engineering and Remote Sensing, vol. 63, no. 7, pp. 887–900, 1997.
[8]  M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience, vol. 52, no. 1, pp. 19–30, 2002.
[9]  P. A. Zollner and K. J. Crane, “Influence of canopy closure and shrub coverage on travel along coarse woody debris by eastern chipmunks (Tamias striatus),” American Midland Naturalist, vol. 150, no. 1, pp. 151–157, 2003.
[10]  F. Berger and F. Rey, “Mountain protection forests against natural hazards and risks: new french developments by integrating forests in risk zoning,” Natural Hazards, vol. 33, no. 3, pp. 395–404, 2004.
[11]  B. J. Choudhury, N. U. Ahmed, S. B. Idso, R. J. Reginato, and C. S. T. Daughtry, “Relations between evaporation coefficients and vegetation indices studied by model simulations,” Remote Sensing of Environment, vol. 50, no. 1, pp. 1–17, 1994.
[12]  J. Wang, P. M. Rich, K. P. Price, and W. D. Kettle, “Relations between NDVI and tree productivity in the central Great Plains,” International Journal of Remote Sensing, vol. 25, no. 16, pp. 3127–3138, 2004.
[13]  J. Jensen, Introductory Digital Processing: A Remote Sensing Perspective, Prentice-Hall, Englewood Cliffs, NJ, USA, 1996.
[14]  C. J. Nichol, K. F. Huemmrich, T. A. Black et al., “Remote sensing of photosynthetic-light-use efficiency of boreal forest,” Agricultural and Forest Meteorology, vol. 101, no. 2-3, pp. 131–142, 2000.
[15]  M. F. Garbulsky, J. Pe?uelas, D. Papale, and I. Filella, “Remote estimation of carbon dioxide uptake by a Mediterranean forest,” Global Change Biology, vol. 14, no. 12, pp. 2860–2867, 2008.
[16]  A. Goerner, M. Reichstein, and S. Rambal, “Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest,” Remote Sensing of Environment, vol. 113, no. 5, pp. 1101–1111, 2009.
[17]  M. Sprintsin, A. Karnieli, S. Sprintsin, S. Cohen, and P. Berliner, “Relationships between stand density and canopy structure in a dryland forest as estimated by ground-based measurements and multi-spectral spaceborne images,” Journal of Arid Environments, vol. 73, no. 10, pp. 955–962, 2009.
[18]  G. W. Koch, S. C. Stillet, G. M. Jennings, and S. D. Davis, “The limits to tree height,” Nature, vol. 428, no. 6985, pp. 851–854, 2004.
[19]  N. Liphschitz, O. Bonneh, and Z. Mendel, “Living stumps—circumstantial evidence for root grafting in Pinus halepensis and P. brutia plantations in Israel,” Israel Journal of Botany, vol. 36, pp. 41–43, 1987.
[20]  H. Hasenauer and R. A. Monserud, “A crown ratio model for Austrian Forests,” Forest Ecology and Management, vol. 84, no. 1–3, pp. 49–60, 1996.
[21]  S. Condés and H. Sterba, “Derivation of compatible crown width equations for some important tree species of Spain,” Forest Ecology and Management, vol. 217, no. 2-3, pp. 203–218, 2005.
[22]  L. E. Krajicek, K. A. Brinkman, and S. F. Gingrich, “Crown competition—a measure of density,” Forest Science, vol. 7, pp. 35–42, 1961.
[23]  T. E. Avery and H. E. Burkhart, Forest Measurements, McGraw-Hill, New York, NY, USA, 1994.
[24]  D. M. Hyink and S. M. Zedaker, “Stand dynamics and the evaluation of forest decline,” Tree Physiology, vol. 3, pp. 17–26, 1987.
[25]  C. Deleuze, J. Herve, F. Colin, and L. Ribeyrolles, “Modelling crown shape of Picea abies: spacing effects,” Canadian Journal of Forest Research, vol. 26, no. 11, pp. 1957–1966, 1996.
[26]  A. M?kel? and P. Vanninen, “Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine,” Canadian Journal of Forest Research, vol. 28, no. 2, pp. 216–227, 1998.
[27]  H. Ishii, J. P. Clement, and D. C. Shaw, “Branch growth and crown form in old coastal Douglas-fir,” Forest Ecology and Management, vol. 131, no. 1–3, pp. 81–91, 2000.
[28]  M. J. Ducey, “Predicting crown size and shape from simple stand variables,” Journal of Sustainable Forestry, vol. 28, no. 1-2, pp. 5–21, 2009.
[29]  J. K. Hall, “DTM project scheme of 1:50,000 topographic sheet mnemonics for Israel,” Geological Survey of Israel Current Research, vol. 8, pp. 47–50, 1993.
[30]  M. Sprintsin, A. Karnieli, P. Berliner, E. Rotenberg, D. Yakir, and S. Cohen, “The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone,” Remote Sensing of Environment, vol. 109, no. 4, pp. 416–428, 2007.
[31]  J. M. Grünzweig, T. Lin, E. Rotenberg, A. Schwartz, and D. Yakir, “Carbon sequestration in arid-land forest,” Global Change Biology, vol. 9, no. 5, pp. 791–799, 2003.
[32]  N. J. Crookstone and A. R. Stage, Percent Canopy Cover and Stand Structure Statistics from the Forest Vegetation Simulator, USDA Publication, 1999.
[33]  Y. Tominaga, “Representative subset selection using genetic algorithms,” Chemometrics and Intelligent Laboratory Systems, vol. 43, no. 1-2, pp. 157–163, 1998.
[34]  A. Gusnanto, Y. Pawitan, J. Huang, and B. Lane, “Variable selection in random calibration of near-infrared instruments: ridge regression and partial least squares regression settings,” Journal of Chemometrics, vol. 17, no. 3, pp. 174–185, 2003.
[35]  L. D. Schroeder, D. L. Sjoquist, and P. E. Stephan, Understanding Regression Analysis, Sage Publications, Beverly Hills, Calif, USA, 1986.
[36]  R. J. Freund, R. C. Littell, and L. Creighton, Regression Using JMP, SAS Institute, Cary, NC, USA, 2003.
[37]  D. A. Belsley, E. Kuh, and R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, John Wiley & Sons, New York, NY, USA, 1980.
[38]  R. D. Snee, “Some aspects of nonorthogonal data analysis—part I: developing prediction equations,” Journal of Quality Technology, vol. 5, no. 2, pp. 67–79, 1973.
[39]  E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6s: an overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp. 675–686, 1997.
[40]  W. Brutsaert, Evaporation into the Atmosphere: Theory, History, and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1982.
[41]  H. G. Jones, Plant and Microclimate, Cambridge University Press, Cambridge, UK, 2nd edition, 1992.
[42]  J. Pisek and J. M. Chen, “Mapping forest background reflectivit over North America with Multi-angle Imaging SpectroRadiometer (MISR) data,” Remote Sensing of Environment, vol. 113, no. 11, pp. 2412–2423, 2009.
[43]  J. Kalliovirta and T. Tokola, “Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information,” Silva Fennica, vol. 39, no. 2, pp. 227–248, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133