全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2013 

Using the Contingent Grouping Method to Value Forest Attributes

DOI: 10.1155/2013/359584

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the first application of a recently proposed stated preference valuation method called contingent grouping. The method is an alternative to other choice modeling methods such as contingent choice or contingent ranking. It was applied to an afforestation program in the northeast of Spain. The attributes included (and the marginal values estimated per individual) were allowing picnicking in the new forests (€2.47), sequestering 1000 tons of CO2 (€0.04), delaying the loss of land productivity by 100 years, due to erosion in the new forests area (€0.783), and allowing four-wheel driving (€6.5), which is perceived as a welfare loss. 1. Introduction Forest ecosystems generate a wide variety of goods and services not only for the forest owners but also for society at large. They provide a number of public goods, like enjoyment from recreational opportunities, nontimber products (e.g., mushrooms, berries, or aromatic herbs), carbon sequestration, erosion prevention and biodiversity preservation, among others. In order to make sound decisions for the whole society, forest planning and management ought to take into account the value of forests for both the landowner and the other affected persons. The field of economics helps in this process by being able to estimate the value, in monetary units, of the forest at stake. Their estimation could constitute a significant source of information for further forest policy design and the development of financial instruments. Forest valuation is often undertaken from choice modeling techniques. They involve surveying people and asking them to state their preferences among a set of alternatives characterized by attributes fixed at different levels [1]. These preferences may be stated, for example, selecting the most preferred alternative from a choice set (named choice experiment; see, e.g., Louviere et al. [2]) or ranking the alternatives included in the choice set (named contingent ranking; see, e.g., Chapman and Staelin [3]) according to their preferences. The different choice modeling variants, like the aforementioned contingent choice and contingent ranking, are able to obtain separate social values for different forest goods and services. Recently, Brey et al. [4] proposed a variant named contingent grouping (CG). It requests individuals to classify alternatives included in a choice set as “better than” or “worse than” a status quo or reference situation. The purpose of this paper is to illustrate an application of CG in order to determine how Catalan people choose among potential afforestation

References

[1]  N. Hanley, S. Mourato, and R. E. Wright, “Choice modelling approaches: a superior alternative for environmental valuation?” Journal of Economic Surveys, vol. 15, no. 3, pp. 435–462, 2001.
[2]  J. J. Louviere, D. A. Hensher, and J. D. Swait, Stated Choice Method. Analysis and Application, Cambridge University Press, Cambridge, UK, 2000.
[3]  R. G. Chapman and R. Staelin, “Exploiting rank ordered choice set data within the stochastic utility model,” Journal of Marketing Research, vol. 19, no. 3, pp. 288–301, 1982.
[4]  R. Brey, O. Bergland, and P. Riera, “A contingent grouping approach for stated preferences,” Resource and Energy Economics, vol. 33, no. 3, pp. 745–755, 2011.
[5]  D. A. Hensher and W. H. Greene, “The mixed logit model: the state of practice,” Transportation, vol. 30, no. 2, pp. 133–176, 2003.
[6]  D. A. Hensher, J. M. Rose, and W. H. Greene, Applied Choice Analysis. A Primer, Cambridge University Press, New York, NY, USA, 2005.
[7]  R. C. Mitchell and R. T. Carson, Using Surveys to Value Public Goods: The Contingent Valuation Method, Resource for the Future, Washington, DC, USA, 1989.
[8]  R. C. Bishop and T. A. Heberlein, “Measuring values of extramarket goods: are indirect measures biased?” American Journal of Agricultural Economics, vol. 61, no. 5, pp. 926–930, 1979.
[9]  W. M. Hanemann, “Welfare evaluations in contingent valuation experiments with discrete responses,” American Journal of Agricultural Economics, vol. 66, no. 3, pp. 332–341, 1984.
[10]  R. A. Kramer and D. E. Mercer, “Valuing a global environmental good: U.S. residents willingness to pay to protect tropical rain forests,” Land Economics, vol. 73, no. 2, pp. 196–210, 1997.
[11]  E. Lehtonen, J. Kuuluvainen, E. Pouta, M. Rekola, and C. Z. Li, “Non-market benefits of forest conservation in southern Finland,” Environmental Science and Policy, vol. 6, no. 3, pp. 195–204, 2003.
[12]  M. Lockwood, J. Loomis, and T. DeLacy, “A contingent valuation survey and benefit-cost analysis of forest preservation in East Gippsland, Australia,” Journal of Environmental Management, vol. 38, no. 3, pp. 233–243, 1993.
[13]  M. Lockwood, J. Loomis, and T. DeLacy, “The relative unimportance of a nonmarket willingness to pay for timber harvesting,” Ecological Economics, vol. 9, no. 2, pp. 145–152, 1994.
[14]  J. B. Loomis and A. Gonzalez-Caban, “A willingness-to-pay function for protecting acres of spotted owl habitat from fire,” Ecological Economics, vol. 25, no. 3, pp. 315–322, 1998.
[15]  M. Rekola and E. Pouta, “Public preferences for uncertain regeneration cuttings: a contingent valuation experiment involving Finnish private forests,” Forest Policy and Economics, vol. 7, no. 4, pp. 635–649, 2005.
[16]  R. Scarpa, S. M. Chilton, W. G. Hutchinson, and J. Buongiorno, “Valuing the recreational benefits from the creation of nature reserves in Irish forests,” Ecological Economics, vol. 33, no. 2, pp. 237–250, 2000.
[17]  M. Ben-Akiva, T. Morikawa, and F. Shiroishi, “Analysis of the reliability of preference ranking data,” Journal of Business Research, vol. 24, no. 2, pp. 149–164, 1991.
[18]  V. Foster and S. Mourato, “Testing for consistency in contingent ranking experiments,” Journal of Environmental Economics and Management, vol. 44, no. 2, pp. 309–328, 2002.
[19]  J. A. Hausman and P. A. Ruud, “Specifying and testing econometric models for rank-ordered data,” Journal of Econometrics, vol. 34, no. 1-2, pp. 83–104, 1987.
[20]  W. Adamowicz, J. Swait, P. Boxall, J. Louviere, and M. Williams, “Perceptions versus objective measures of environmental quality in combined revealed and stated preference models of environmental valuation,” Journal of Environmental Economics and Management, vol. 32, no. 1, pp. 65–84, 1997.
[21]  P. C. Boxall and B. MacNab, “Exploring the preferences of wildlife recreationists for features of boreal forest management: a choice experiment approach,” Canadian Journal of Forest Research, vol. 30, no. 12, pp. 1931–1941, 2000.
[22]  P. Horne, P. C. Boxall, and W. L. Adamowicz, “Multiple-use management of forest recreation sites: a spatially explicit choice experiment,” Forest Ecology and Management, vol. 207, no. 1-2, pp. 189–199, 2005.
[23]  J. Rolfe, J. Bennett, and J. Louviere, “Choice modelling and its potential application to tropical rainforest preservation,” Ecological Economics, vol. 35, no. 2, pp. 289–302, 2000.
[24]  G. D. Garrod and K. G. Willis, “The non-use benefits of enhancing forest biodiversity: a contingent ranking study,” Ecological Economics, vol. 21, no. 1, pp. 45–61, 1997.
[25]  J. Siikamaki and D. Layton, “Pooled models for contingent valuation and contingent raking data: valuing benefits from biodiversity conservation,” Working Paper, Department of Agricultural and Resource Economics, University of California, Davis, Calif, USA, 2001.
[26]  P. Riera, M. Giergiczny, J. Pe?uelas, and P. A. Mahieu, “A choice modelling case study on climate change involving two-way interactions,” Journal of Forest Economics, vol. 18, no. 4, pp. 345–354, 2012.
[27]  R. D. Luce and P. Suppes, “Preference, utility and subjective probabiblity,” in Handbook of Mathematical Psychology, R. D. Luce, R. R. Bush, and E. Galanter, Eds., J. Wiley and Sons, New York, NY, USA, 1965.
[28]  Departament d’Agricultura, RamaderIa I Pesca, DARP, Pla General de Política Forestal. Generalitat de Catalunya, Barcelona, Spain, 1994.
[29]  C. García, Estimació de les macromaginituds agràries de les comarques de Catalunya, 1993, Serveis de Publicacions, Universitat de Lleida, Lleida, Spain, 1997.
[30]  M. Merlo and E. Rojas, “Policy instruments for promoting positive externalities of Mediterranean forests,” in Proceedings of the European Forest Institute, Annual Conference, Chartreuse Ittingen, Switzerland, 1999.
[31]  Council Regulation (EC) No 2080/92 Community aid scheme for forestry measures in agriculture, 30 June 1992.
[32]  Council Regulation (EC) No 1257/1999 Support for rural development from the European Agricultural Guidance and Guarantee Fund (EAGGF) and amending and repealing certain Regulations, 17 May 1999.
[33]  K. Train, Discrete Choice Methods with Simulation, Cambridge University Press, New York, NY, USA, 2003.
[34]  W. H. Greene, NLogit Version 3. 0 Reference Guide, Econometric Software, Plainview, NY, USA, 2002.
[35]  D. McFadden and K. Train, “Mixed MNL models for discrete response,” Journal of Applied Econometrics, vol. 15, no. 5, pp. 447–470, 2000.
[36]  M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, John Wiley and Sons, New York, NY, USA, 3rd edition, 2000.
[37]  I. Krinsky and A. L. Robb, “On approximating the statistical properties of elasticities,” The Review of Economics and Statistics, vol. 68, no. 4, pp. 715–719, 1986.
[38]  B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York, NY, USA, 1986.
[39]  Departament de Medi Ambient, Les emissions a l’atmosfera a Catalunya. Una aproximació quantitativa. Quaderns de Medi Ambient, 5. Generalitat de Catalunya, Barcelona, Spain, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133