Waldenstr?m macroglobulinemia (WM) is a rare and currently incurable neoplasm of IgM-expressing B-lymphocytes that is characterized by the occurrence of a monoclonal IgM (mIgM) paraprotein in blood serum and the infiltration of the hematopoietic bone marrow with malignant lymphoplasmacytic cells. The symptoms of patients with WM can be attributed to the extent and tissue sites of tumor cell infiltration and the magnitude and immunological specificity of the paraprotein. WM presents fascinating clues on neoplastic B-cell development, including the recent discovery of a specific gain-of-function mutation in the MYD88 adapter protein. This not only provides an intriguing link to new findings that natural effector IgM+IgD+ memory B-cells are dependent on MYD88 signaling, but also supports the hypothesis that WM derives from primitive, innate-like B-cells, such as marginal zone and B1 B-cells. Following a brief review of the clinical aspects and natural history of WM, this review discusses the thorny issue of WM’s cell of origin in greater depth. Also included are emerging, genetically engineered mouse models of human WM that may enhance our understanding of the biologic and genetic underpinnings of the disease and facilitate the design and testing of new approaches to treat and prevent WM more effectively. 1. Clinical Aspects of WM: A Brief Overview 1.1. Definition and Classification The 2008 World Health Organization (WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissues [1] defines Waldenstr?m macroglobulinemia (WM) as a type of lymphoplasmacytic lymphoma (LPL) that involves the bone marrow and is associated with a monoclonal immunoglobulin (Ig) of the M class in the serum. The monoclonal IgM is usually referred to as IgM paraprotein or “M spike”—or mIgM for short. LPL is a low-grade malignancy of the mature B-lymphocyte lineage that exhibits a cytological spectrum of lymphoplasmacytic differentiation that ranges from small B cells to fully differentiated plasma cells (PCs). Between these extremes lies a sizable, if not predominant, fraction of cells with intermediate features and, therefore, designated lymphoplasmacytoid or lymphoplasmacytic cells (LPCs) [2]. Sometimes these cells are referred to as plasmacytoid or plasmacytic lymphocytes. Although LPL is characteristically associated with an mIgM that can be readily detected by serum protein electrophoresis, LPL does not always lead to WM. This is because approximately 5% of LPLs either produce a paraprotein that is not of the M class (but instead belongs in most cases to the A class or
References
[1]
E. Campo, S. H. Swerdlow, N. L. Harris, S. Pileri, H. Stein, and E. S. Jaffe, “The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications,” Blood, vol. 117, no. 19, pp. 5019–5032, 2011.
[2]
E. D. Remstein, C. A. Hanson, R. A. Kyle, J. M. Hodnefield, and P. J. Kurtin, “Despite apparent morphologic and immunophenotypic heterogeneity, Waldenstrom's macroglobulinemia is consistently composed of cells along a morphologic continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells,” Seminars in Oncology, vol. 30, no. 2, pp. 182–186, 2003.
[3]
P. Lin, S. Hao, B. C. Handy, C. E. Bueso-Ramos, and L. J. Medeiros, “Lymphoid neoplasms associated with IgM paraprotein: a study of 382 patients,” American Journal of Clinical Pathology, vol. 123, no. 2, pp. 200–205, 2005.
[4]
S. S. Sahota, R. Garand, R. Mahroof et al., “V(H) gene analysis of IgM-secreting myeloma indicates an origin from a memory cell undergoing isotype switch events,” Blood, vol. 94, no. 3, pp. 1070–1076, 1999.
[5]
A. Fadil and D. E. Taylor, “The lung and Waldenstrom's macroglobulinemia,” Southern Medical Journal, vol. 91, no. 7, pp. 681–685, 1998.
[6]
J. A. Rosenthal, W. J. Curran, and S. J. Schuster Jr., “Waldenstrom's macroglobulinemia resulting from localized gastric lymphoplasmacytoid lymphoma,” American Journal of Hematology, vol. 58, no. 3, pp. 244–245, 1998.
[7]
R. R. Doshi, R. Z. Silkiss, and R. K. Imes, “Orbital involvement in Bing-Neel syndrome,” Journal of Neuro-Ophthalmology, vol. 31, no. 1, pp. 94–95, 2011.
[8]
F. Fintelmann, R. Forghani, P. Schaefer, E. Hochberg, and F. Hochberg, “Bing-Neel Syndrome revisited,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 104–106, 2009.
[9]
M. J. Stone, “Waldenstr?m's macroglobulinemia: hyperviscosity syndrome and cryoglobulinemia,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 97–99, 2009.
[10]
H. C. Kwaan and A. Bongu, “The hyperviscosity syndromes,” Seminars in Thrombosis and Hemostasis, vol. 25, no. 2, pp. 199–208, 1999.
[11]
M. A. Gertz, “Waldenstr?m Macroglobulinemia: 2012 update on diagnosis, risk stratification, and management,” American Journal of Hematology, vol. 87, no. 5, pp. 504–510, 2012.
[12]
B. J. Camp and C. M. Magro, “Cutaneous macroglobulinosis: a case series,” Journal of Cutaneous Pathology, vol. 39, no. 10, pp. 962–970, 2012.
[13]
K. E. Spicknall, L. E. Dubas, and D. F. Mutasim, “Cutaneous macroglobulinosis with monotypic plasma cells: a specific manifestation of Waldenstrom macroglobulinemia,” Journal of Cutaneous Pathology, vol. 40, no. 5, pp. 440–444, 2013.
[14]
G. A. M. Veltman, S. Van Veen, J. C. Kluin-Nelemans, J. A. Bruijn, and L. A. Van Es, “Renal disease in Waldenstrom's macroglobulinaemia,” Nephrology Dialysis Transplantation, vol. 12, no. 6, pp. 1256–1259, 1997.
[15]
V. Gnemmi, X. Leleu, F. Provot, F. Moulonguet, and D. Buob, “Cast nephropathy and light-chain deposition disease in Waldenstrom macroglobulinemia,” American Journal of Kidney Diseases, vol. 60, no. 3, pp. 487–491, 2012.
[16]
M. A. Gertz, G. Merlini, and S. P. Treon, “Amyloidosis and Waldenstr?m's macroglobulinemia,” Hematology, pp. 257–282, 2004.
[17]
J. Gardyn, A. Schwartz, R. Gal, U. Lewinski, D. Kristt, and A. M. Cohen, “Waldenstrom's macroglobulinemia associated with AA amyloidosis,” International Journal of Hematology, vol. 74, no. 1, pp. 76–78, 2001.
[18]
W. Pruzanski and K. H. Shumak, “Biologic activity of cold-reacting autoantibodies (Second of two parts),” New England Journal of Medicine, vol. 297, no. 11, pp. 583–589, 1977.
[19]
W. Pruzanski and K. H. Shumak, “Biologic activity of cold-reacting autoantibodies (First of two parts),” New England Journal of Medicine, vol. 297, no. 10, pp. 538–542, 1977.
[20]
A. Simon, B. Asli, M. Braun-Falco, et al., “Schnitzler's syndrome: diagnosis, treatment, and follow-up,” Allergy, vol. 68, no. 5, pp. 562–568, 2013.
[21]
A. H. Ropper and K. C. Gorson, “Neuropathies associated with paraproteinemia,” New England Journal of Medicine, vol. 338, no. 22, pp. 1601–1607, 1998.
[22]
J. C. Brouet, J. P. Clauvel, and F. Danon, “Biologic and clinical significance of cryoglobulins. A report of 86 cases,” American Journal of Medicine, vol. 57, no. 5, pp. 775–788, 1974.
[23]
E. M. Ocio, J. M. Hernández, G. Mateo et al., “Immunophenotypic and cytogenetic comparison of Waldenstr?m's macroglobulinemia with splenic marginal zone lymphoma,” Clinical Lymphoma, vol. 5, no. 4, pp. 241–245, 2005.
[24]
M. Mateo, M. Mollejo, R. Villuendas et al., “7q31-32 allelic loss is a frequent finding in splenic marginal zone lymphoma,” American Journal of Pathology, vol. 154, no. 5, pp. 1583–1589, 1999.
[25]
J. I. Chacón, M. Mollejo, E. Mu?oz et al., “Splenic marginal zone lymphoma: clinical characteristics and prognostic factors in a series of 60 patients,” Blood, vol. 100, no. 5, pp. 1648–1654, 2002.
[26]
C. Thieblemont, V. Nasser, P. Felman et al., “Small lymphocytic lymphoma, marginal zone B-cell lymphoma, and mantle cell lymphoma exhibit distinct gene-expression profiles allowing molecular diagnosis,” Blood, vol. 103, no. 7, pp. 2727–2737, 2004.
[27]
H. C. Kluin-Nelemans, E. Hoster, O. Hermine, et al., “Treatment of older patients with mantle-cell lymphoma,” The New England Journal of Medicine, vol. 367, pp. 520–531, 2012.
[28]
J. Vaandrager, E. Schuuring, E. Zwikstra et al., “Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization,” Blood, vol. 88, no. 4, pp. 1177–1182, 1996.
[29]
J. Li, F. Gaillard, A. Moreau et al., “Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization,” American Journal of Pathology, vol. 154, no. 5, pp. 1449–1452, 1999.
[30]
O. Annibali, M. T. Petrucci, P. Del Bianco et al., “IgM multiple myeloma: report of four cases and review of the literature,” Leukemia and Lymphoma, vol. 47, no. 8, pp. 1565–1569, 2006.
[31]
D. E. Reece, D. H. Vesole, S. Shrestha et al., “Outcome of patients with IgD and IgM multiple myeloma undergoing autologous hematopoietic stem cell transplantation: a retrospective cibmtr study,” Clinical Lymphoma, Myeloma and Leukemia, vol. 10, no. 6, pp. 458–463, 2010.
[32]
R. G. Owen, A. G. Bynoe, A. Varghese, R. M. de Tute, and A. C. Rawstron, “Heterogeneity of histological transformation events in Waldenstr?m's macroglobulinemia (WM) and related disorders,” Clinical Lymphoma, Myeloma & Leukemia, vol. 11, no. 1, pp. 176–179, 2011.
[33]
M. Bj?rkholm, E. Johansson, D. Papamichael et al., “Patterns of clinical presentation, treatment, and outcome in patients with Waldenstrom's macroglobulinemia: a two-institution study,” Seminars in Oncology, vol. 30, no. 2, pp. 226–230, 2003.
[34]
S. Y. Kristinsson, M. Bj?rkholm, T. M.-L. Andersson et al., “Patterns of survival and causes of death following a diagnosis of monoclonal gammopathy of undetermined significance: a population-based study,” Haematologica, vol. 94, no. 12, pp. 1714–1720, 2009.
[35]
S. Y. Kristinsson, S. Eloranta, P. W. Dickman, et al., “Patterns of survival in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia: a population-based study of 1, 555 patients diagnosed in Sweden from 1980 to 2005,” American Journal of Hematology, vol. 88, no. 1, pp. 60–65, 2013.
[36]
M. V. Dhodapkar, A. Hoering, M. A. Gertz et al., “Long-term survival in Waldenstrom macroglobulinemia: 10-year follow-up of Southwest Oncology Group directed intergroup trial S9003,” Blood, vol. 113, no. 4, pp. 793–796, 2009.
[37]
T. Facon, M. Brouillard, A. Duhamel et al., “Prognostic factors in Waldenstrom's macroglobulinemia: a report of 167 cases,” Journal of Clinical Oncology, vol. 11, no. 8, pp. 1553–1558, 1993.
[38]
P. Morel, M. Monconduit, D. Jacomy et al., “Prognostic factors in Waldenstrom macroglobulinemia: a report on 232 patients with the description of a new scoring system and its validation on 253 other patients,” Blood, vol. 96, no. 3, pp. 852–858, 2000.
[39]
G. Merlini, L. Baldini, C. Broglia et al., “Prognostic factors in symptomatic Waldenstrom's macroglobulinemia,” Seminars in Oncology, vol. 30, no. 2, pp. 211–215, 2003.
[40]
R. Garcia-Sanz, S. Montoto, A. Torrequebrada, et al., “Waldenstrom macroglobulinaemia: presenting features and outcome in a series with 217 cases,” British Journal of Haematology, vol. 115, no. 3, pp. 575–582, 2001.
[41]
P. Morel, A. Duhamel, P. Gobbi et al., “International prognostic scoring system for Waldenstr?m macroglobulinemia,” Blood, vol. 113, no. 18, pp. 4163–4170, 2009.
[42]
R. M. de Tute, A. C. Rawstron, and R. G. Owen, “Immunoglobulin M concentration in Waldenstrom macroglobulinemia: correlation with bone marrow B cells and plasma cells,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 211–213, 2013.
[43]
E. Kastritis, K. Zervas, P. Repoussis et al., “Prognostication in young and old patients with Waldenstr?m's macroglobulinemia: importance of the international prognostic scoring system and of serum lactate dehydrogenase,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 50–52, 2009.
[44]
E. Kastritis, M. Kyrtsonis, E. Hadjiharissi et al., “Validation of the International Prognostic Scoring System (IPSS) for Waldenstrom's Macroglobulinemia (WM) and the importance of serum lactate dehydrogenase (LDH),” Leukemia Research, vol. 34, no. 10, pp. 1340–1343, 2010.
[45]
X. Leleu, W. Xie, M. Bagshaw et al., “The role of serum immunoglobulin free light chain in response and progression in Waldenstrom macroglobulinemia,” Clinical Cancer Research, vol. 17, no. 9, pp. 3013–3018, 2011.
[46]
I. M. Ghobrial, R. Fonseca, M. A. Gertz et al., “Prognostic model for disease-specific and overall mortality in newly diagnosed symptomatic patients with Waldenstrom macroglobulinaemia,” British Journal of Haematology, vol. 133, no. 2, pp. 158–164, 2006.
[47]
S. Treon, C. Patterson, E. Kimby, and M. Stone, “Advances in the biology and treatment of Waldenstr?m's macroglobulinemia: a report from the 5th international workshop on Waldenstr?m's macroglobulinemia, Stockholm, Sweden,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 10–15, 2009.
[48]
I. M. Ghobrial, “Are you sure this is Waldenstrom macroglobulinemia?” American Society of Hematology Education Program, vol. 2012, pp. 586–594, 2012.
[49]
R. G. Owen, R. A. Kyle, M. J. Stone, et al., “Response assessment in Waldenstrom macroglobulinaemia: update from the VIth International Workshop,” British Journal of Haematology, vol. 160, no. 2, pp. 171–176, 2013.
[50]
M. Gertz, “Waldenstrom macroglobulinemia: my way,” Leukemia & Lymphoma, vol. 54, no. 3, pp. 464–471, 2013.
[51]
M. A. Gertz, C. B. Reeder, R. A. Kyle, and S. M. Ansell, “Stem cell transplant for Waldenstr?m macroglobulinemia: an underutilized technique,” Bone Marrow Transplantation, vol. 47, no. 9, pp. 1147–1153, 2012.
[52]
L. Souchet-Compain, S. Nguyen, S. Choquet, and V. Leblond, “Primary therapy of Waldenstrom macroglobulinemia with nucleoside analogue-based therapy,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 227–230, 2013.
[53]
I. M. Ghobrial, “Choice of therapy for patients with Waldenstrom macroglobulinemia,” Journal of Clinical Oncology, vol. 31, no. 3, pp. 291–293, 2013.
[54]
M. A. Dimopoulos, C. Zervas, A. Zomas et al., “Extended rituximab therapy for previously untreated patients with Waldenstr?m's macroglubulinemia,” Clinical Lymphoma, vol. 3, no. 3, pp. 163–166, 2002.
[55]
M. A. Gertz, M. Rue, E. Blood, L. S. Kaminer, D. H. Vesole, and P. R. Greipp, “Multicenter phase 2 trial of rituximab for Waldenstr?m macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98),” Leukemia and Lymphoma, vol. 45, no. 10, pp. 2047–2055, 2004.
[56]
S. P. Treon, C. Emmanouilides, E. Kimby et al., “Extended rituximab therapy in Waldenstr?m's macroglobulinemia,” Annals of Oncology, vol. 16, no. 1, pp. 132–138, 2005.
[57]
S. P. Treon, J. D. Soumerai, Z. R. Hunter et al., “Long-term follow-up of symptomatic patients with lymphoplasmacytic lymphoma/Waldenstr?m macroglobulinemia treated with the anti-CD52 monoclonal antibody alemtuzumab,” Blood, vol. 118, no. 2, pp. 276–281, 2011.
[58]
S. P. Treon, J. D. Soumerai, A. R. Branagan et al., “Thalidomide and rituximab in Waldenstrom macroglobulinemia,” Blood, vol. 112, no. 12, pp. 4452–4457, 2008.
[59]
S. P. Treon, J. D. Soumerai, A. R. Branagan et al., “Lenalidomide and rituximab in Waldenstrom's macroglobulinemia,” Clinical Cancer Research, vol. 15, no. 1, pp. 355–360, 2009.
[60]
I. M. Ghobrial, M. Gertz, B. LaPlant et al., “Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory waldenstr?m macroglobulinemia,” Journal of Clinical Oncology, vol. 28, no. 8, pp. 1408–1414, 2010.
[61]
I. M. Ghobrial, A. Roccaro, F. Hong et al., “Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstr?m's macroglobulinemia,” Clinical Cancer Research, vol. 16, no. 3, pp. 1033–1041, 2010.
[62]
R. Garca-Sanz and E. M. Ocio, “Novel treatment regimens for Waldenstrms macroglobulinemia,” Expert Review of Hematology, vol. 3, no. 3, pp. 339–350, 2010.
[63]
S. P. Treon, C. Hanzis, C. Tripsas et al., “Bendamustine therapy in patients with relapsed or refractory Waldenstr?m's macroglobulinemia,” Clinical Lymphoma, Myeloma and Leukemia, vol. 11, no. 1, pp. 133–135, 2011.
[64]
M. Hensel, J. Brust, C. Pl?ger, et al., “Excellent long-term survival of 170 patients with Waldenstrom's macroglobulinemia treated in private oncology practices and a university hospital,” Annals of Hematology, vol. 91, no. 12, pp. 1923–1928, 2012.
[65]
M. J. Stone and S. A. Bogen, “Evidence-based focused review of management of hyperviscosity syndrome,” Blood, vol. 119, no. 10, pp. 2205–2208, 2012.
[66]
M. J. Stone and S. A. Bogen, “Role of plasmapheresis in Waldenstrom's macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 238–240, 2013.
[67]
S. P. Treon, C. K. Tripsas, B. T. Ciccarelli, et al., “Patients with Waldenstrom macroglobulinemia commonly present with iron deficiency and those with severely depressed transferrin saturation levels show response to parenteral iron administration,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 241–243, 2013.
[68]
S. P. Treon, “How I treat Waldenstr?m macroglobulinemia,” Blood, vol. 114, no. 12, pp. 2375–2385, 2009.
[69]
A. D'Souza, S. Ansell, C. Reeder, and M. A. Gertz, “Waldenstrom macroglobulinaemia: the key questions,” British Journal of Haematology, 2013.
[70]
N. Neparidze and M. V. Dhodapkar, “Waldenstrom's macroglobulinemia: recent advances in biology and therapy,” Clinical Advances in Hematology and Oncology, vol. 7, no. 10, pp. 677–690, 2009.
[71]
H. Wang, Y. Chen, F. Li et al., “Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study,” Cancer, vol. 118, no. 15, pp. 3793–3800, 2012.
[72]
J. Sekhar, K. Sanfilippo, Q. Zhang, K. Trinkaus, and R. Vij D, “Waldenstrom macroglobulinemia: a surveillance, epidemiology, and end results database review from 1988 to 2005,” Leukemia & Lymphoma, vol. 53, no. 8, pp. 1625–1626, 2012.
[73]
E. E. Manasanch, S. Y. Kristinsson, and O. Landgren, “Etiology of Waldenstrom macroglobulinemia: genetic factors and immune-related conditions,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 194–197, 2013.
[74]
R. A. Kyle, T. M. Therneau, S. V. Rajkumar et al., “Long-term follow-up of IgM monoclonal gammopathy of undetermined significance,” Blood, vol. 102, no. 10, pp. 3759–3764, 2003.
[75]
S. Y. Kristinsson, M. Bjorkholm, and O. Landgren, “Survival in monoclonal gammopathy of undetermined significance and Waldenstrom macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 187–190, 2013.
[76]
T. P. Giordano, L. Henderson, O. Landgren et al., “Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus,” Journal of the American Medical Association, vol. 297, no. 18, pp. 2010–2017, 2007.
[77]
J. Koshiol, G. Gridley, E. A. Engels, M. L. McMaster, and O. Landgren, “Chronic immune stimulation and subsequent Waldenstr?m macroglobulinemia,” Archives of Internal Medicine, vol. 168, no. 17, pp. 1903–1909, 2008.
[78]
S. Y. Kristinsson, J. Koshiol, M. Bj?rkholm et al., “Immune-related and inflammatory conditions and risk of lymphoplasmacytic lymphoma or Waldenstrom macroglobulinemia,” Journal of the National Cancer Institute, vol. 102, no. 8, pp. 557–567, 2010.
[79]
E. K. Lindqvist, L. R. Goldin, O. Landgren et al., “Personal and family history of immune-related conditions increase the risk of plasma cell disorders: a population-based study,” Blood, vol. 118, no. 24, pp. 6284–6291, 2011.
[80]
J. M. Fine, P. Lambin, M. Massari, and L. P. Leroux Ph., “Malignant evolution of asymptomatic monoclonal IgM after seven and fifteen years in two siblings of a patient with Waldenstrom's macroglobulinemia,” Acta Medica Scandinavica, vol. 211, no. 3, pp. 237–239, 1982.
[81]
M. S. Linet, R. L. Humphrey, E. S. Mehl et al., “A case-control and family study of Waldenstrom's macroglobulinemia,” Leukemia, vol. 7, no. 9, pp. 1363–1369, 1993.
[82]
H. M. Ogsmundsdottir, G. M. Johannesson, S. Sveinsdottir, S. Einarsdottir, A. Hegeman, and O. Jensson, “Familial macroglobulinaemia: hyperactive B-cells but normal natural killer function,” Scandinavian Journal of Immunology, vol. 40, no. 2, pp. 195–200, 1994.
[83]
S. P. Treonm, Z. R. Hunter, A. Aggarwal, et al., “Characterization of familial Waldenstrom's macroglobulinemia,” Annals of Oncology, vol. 17, no. 3, pp. 488–494, 2006.
[84]
S. Y. Kristinsson, M. Bj?rkholm, L. R. Goldin, M. L. McMaster, I. Turesson, and O. Landgren, “Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstr?m macroglobulinemia patients: a population-based study in Sweden,” Blood, vol. 112, no. 8, pp. 3052–3056, 2008.
[85]
L. R. Goldin, R. M. Pfeiffer, G. Gridley et al., “Familial aggregation of Hodgkin lymphoma and related tumors,” Cancer, vol. 100, no. 9, pp. 1902–1908, 2004.
[86]
L. R. Goldin, R. M. Pfeiffer, X. Li, and K. Hemminki, “Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database,” Blood, vol. 104, no. 6, pp. 1850–1854, 2004.
[87]
R. H. Royer, J. Koshiol, T. R. Giambarresi, L. G. Vasquez, R. M. Pfeiffer, and M. L. McMaster, “Differential characteristics of Waldenstr?m macroglobulinemia according to patterns of familial aggregation,” Blood, vol. 115, no. 22, pp. 4464–4471, 2010.
[88]
M. L. McMaster, G. Csako, T. R. Giambarresi et al., “Long-term evaluation of three multiple-case Waldenstr?m macroglobulinemia families,” Clinical Cancer Research, vol. 13, no. 17, pp. 5063–5069, 2007.
[89]
L. R. Goldin, M. L. McMaster, and N. E. Caporaso, “Precursors to lymphoproliferative malignancies,” Cancer Epidemiology, Biomarkers & Prevention, vol. 22, pp. 533–539, 2013.
[90]
N. E. Caporaso, “Why precursors matter,” Cancer Epidemiology, Biomarkers & Prevention, vol. 22, pp. 518–520, 2013.
[91]
X. Leleu, X. Jia, J. Runnels et al., “The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia,” Blood, vol. 110, no. 13, pp. 4417–4426, 2007.
[92]
X. Leleu, J. Eeckhoute, X. Jia, et al., “Targeting NF-kappaB in Waldenstrom macroglobulinemia,” Blood, vol. 111, no. 10, pp. 5068–5077, 2008.
[93]
A. M. Roccaro, X. Leleu, A. Sacco et al., “Dual targeting of the proteasome regulates survival and homing in Waldenstr?m macroglobulinemia,” Blood, vol. 111, no. 9, pp. 4752–4763, 2008.
[94]
H. T. Ngo, A. K. Azab, M. Farag et al., “Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom macroglobulinemia,” Clinical Cancer Research, vol. 15, no. 19, pp. 6035–6041, 2009.
[95]
X. Leleu, Z. R. Hunter, L. Xu et al., “Expression of regulatory genes for lymphoplasmacytic cell differentiation in Waldenstrom Macroglobulinemia,” British Journal of Haematology, vol. 145, no. 1, pp. 59–63, 2009.
[96]
H. T. Ngo, X. Leleu, J. Lee et al., “SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia,” Blood, vol. 112, no. 1, pp. 150–158, 2008.
[97]
S. Poulain, C. Herbaux, E. Bertrand, et al., “Genomic studies have identified multiple mechanisms of genetic changes in Waldenstr?m macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 202–204, 2013.
[98]
A. Sacco, Y. Zhang, P. Maiso, et al., “microRNA Aberrations in Waldenstrom macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 205–207, 2013.
[99]
S. P. Treon, L. Xu, G. Yang, et al., “MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia,” The New England Journal of Medicine, vol. 367, pp. 826–833, 2012.
[100]
A. Agarwal and I. M. Ghobrial, “The bone marrow microenvironment in waldenstrom macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 218–221, 2013.
[101]
R. Fonseca and S. Hayman, “Waldenstr?m macroglobulinaemia,” British Journal of Haematology, vol. 138, no. 6, pp. 700–720, 2007.
[102]
A. W. Ho, E. Hatjiharissi, B. T. Ciccarelli, et al., “CD27-CD70 interactions in the pathogenesis of Waldenstrom macroglobulinemia,” Blood, vol. 112, no. 12, pp. 4683–4689, 2008.
[103]
N. C. Gutiérrez, E. M. Ocio, J. de las Rivas et al., “Gene expression profiling of B lymphocytes and plasma cells from Waldenstr?m's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals,” Leukemia, vol. 21, no. 3, pp. 541–549, 2007.
[104]
L. DuVillard, M. Guiguet, R.-O. Casasnovas et al., “Diagnostic value of serum IL-6 level in monoclonal gammopathies,” British Journal of Haematology, vol. 89, no. 2, pp. 243–249, 1995.
[105]
E. C. R. Hatzimichael, L. Christou, M. Bai, G. Kolios, L. Kefala, and K. L. Bourantas, “Serum levels of IL-6 and its soluble receptor (sIL-6R) in Waldenstr?m's macroglobulinemia,” European Journal of Haematology, vol. 66, no. 1, pp. 1–6, 2001.
[106]
S. P. Treon, C. J. Patterson, N. C. Munshi, and K. C. Anderson, “Proceedings of the seventh international workshop on waldenstrom macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 181–183, 2013.
[107]
S. Y. Kristinsson, J. Koshiol, M. Bj?rkholm et al., “Immune-related and inflammatory conditions and risk of lymphoplasmacytic lymphoma or Waldenstrom macroglobulinemia,” Journal of the National Cancer Institute, vol. 102, no. 8, pp. 557–567, 2010.
[108]
L. R. Goldin, M. Bj?rkholm, S. Y. Kristinsson, I. Turesson, and O. Landgren, “Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin's lymphomas among relatives of patients with chronic lymphocytic leukemia,” Haematologica, vol. 94, no. 5, pp. 647–653, 2009.
[109]
X. Liang, N. Caporaso, M. L. McMaster et al., “Common genetic variants in candidate genes and risk of familial lymphoid malignancies,” British Journal of Haematology, vol. 146, no. 4, pp. 418–423, 2009.
[110]
H. M. ?gmundsdóttir, S. Sveinsdóttir, á. Sigfússon, I. Skaftadóttir, J. G. Jónasson, and B. A. Agnarsson, “Enhanced B cell survival in familial macroglobulinaemia is associated with increased expression of Bcl-2,” Clinical and Experimental Immunology, vol. 117, no. 2, pp. 252–260, 1999.
[111]
W. J. Chng, R. F. Schop, T. Price-Troska et al., “Gene-expression profiling of Waldenstr?m macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma,” Blood, vol. 108, no. 8, pp. 2755–2763, 2006.
[112]
E. Paramithiotis and M. D. Cooper, “Memory B lymphocytes migrate to bone marrow in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 208–212, 1997.
[113]
J. L. Preud'homme and M. Seligmann, “Immunoglobulins on the surface of lymphoid cells in Waldenstr?m's macroglobulinemia,” Journal of Clinical Investigation, vol. 51, no. 3, pp. 701–705, 1972.
[114]
B. R. Smith, N. J. Robert, and K. A. Ault, “In Waldenstrom's macroglobulinemia the quantity of detectable circulating monoclonal B lymphocytes correlates with clinical course,” Blood, vol. 61, no. 5, pp. 911–914, 1983.
[115]
Y. Levy, J.-P. Fermand, S. Navarro et al., “Interleukin 6 dependence of spontaneously in vitro differentiation of B cells from patients with IgM gammapathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 9, pp. 3309–3313, 1990.
[116]
M. L. McMaster and N. Caporaso, “Waldenstr?m macroglobulinaemia and IgM monoclonal gammopathy of undetermined significance: emerging understanding of a potential precursor condition,” British Journal of Haematology, vol. 139, no. 5, pp. 663–671, 2007.
[117]
H. T. Lynch, P. Watson, S. Tarantolo, et al., “Phenotypic heterogeneity in multiple myeloma families,” Journal of Clinical Oncology, vol. 23, no. 4, pp. 685–693, 2005.
[118]
O. Landgren, S. Y. Kristinsson, L. R. Goldin et al., “Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden,” Blood, vol. 114, no. 4, pp. 791–795, 2009.
[119]
T. Henry and R. Fonseca, “Genomics and proteomics in multiple myeloma and Waldenstr?m macroglobulinemia,” Current Opinion in Hematology, vol. 14, no. 4, pp. 369–374, 2007.
[120]
E. M. Ocio, R. F. J. Schop, B. Gonzalez et al., “6q deletion in Waldenstr?m macroglobulinemia is associated with features of adverse prognosis,” British Journal of Haematology, vol. 136, no. 1, pp. 80–86, 2007.
[121]
E. Braggio, J. J. Keats, X. Leleu et al., “Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-κB signaling pathways in Waldenstr?m's macroglobulinemia,” Cancer Research, vol. 69, no. 8, pp. 3579–3588, 2009.
[122]
L. Pascal, J. Gay, C. Willekens, et al., “Bortezomib and Waldenstrom's macroglobulinemia,” Expert Opinion on Pharmacotherapy, vol. 10, no. 5, pp. 909–916, 2009.
[123]
A. M. Roccaro, A. Sacco, C. Chen et al., “MicroRNA expression in the biology, prognosis, and therapy of Waldenstr?m macroglobulinemia,” Blood, vol. 113, no. 18, pp. 4391–4402, 2009.
[124]
E. Hatjiharissi, H. Ngo, A. A. Leontovich et al., “Proteomic analysis of Waldenstrom macroglobulinemia,” Cancer Research, vol. 67, no. 8, pp. 3777–3784, 2007.
[125]
M. J. Roberts, A. Chadburn, S. Ma, E. Hyjek, and L. C. Peterson, “Nuclear protein dysregulation in lymphoplasmacytic lymphoma/waldenstrom macroglobulinemia,” American Journal of Clinical Pathology, vol. 139, pp. 210–219, 2013.
[126]
S. Zibellini, D. Capello, F. Forconi et al., “Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma,” Haematologica, vol. 95, no. 10, pp. 1792–1796, 2010.
[127]
A. Hadzidimitriou, A. Agathangelidis, N. Darzentas et al., “Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases,” Blood, vol. 118, no. 11, pp. 3088–3095, 2011.
[128]
A. Agathangelidis, N. Darzentas, A. Hadzidimitriou, et al., “Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies,” Blood, vol. 119, no. 19, pp. 4467–4475, 2012.
[129]
E. Kostareli, M. Gounari, A. Janus et al., “Antigen receptor stereotypy across B-cell lymphoproliferations: the case of IGHV4-59/IGKV3-20 receptors with rheumatoid factor activity,” Leukemia, vol. 26, no. 5, pp. 1127–1131, 2012.
[130]
S. S. Sahota, F. Forconi, C. H. Ottensmeier et al., “Typical waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events,” Blood, vol. 100, no. 4, pp. 1505–1507, 2002.
[131]
S. S. Sahota, F. Forconi, C. H. Ottensmeier, and F. K. Stevenson, “Origins of the malignant clone in typical Waldenstrom's macroglobulinemia,” Seminars in Oncology, vol. 30, no. 2, pp. 136–141, 2003.
[132]
J. Kriangkum, B. J. Taylor, S. P. Treon, M. J. Mant, A. R. Belch, and L. M. Pilarski, “Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood,” Blood, vol. 104, no. 7, pp. 2134–2142, 2004.
[133]
J. Kriangkum, B. J. Taylor, S. P. Treon et al., “Molecular characterization of Waldenstrom's macroglobulinemia reveals frequent occurrence of two B-cell clones having distinct IgH VDJ sequences,” Clinical Cancer Research, vol. 13, no. 7, pp. 2005–2013, 2007.
[134]
J. Kriangkum, B. J. Taylor, E. Strachan et al., “Impaired class switch recombination (CSR) in Waldenstr?m macroglobulinemia (WM) despite apparently normal CSR machinery,” Blood, vol. 107, no. 7, pp. 2920–2927, 2006.
[135]
G. Babbage, M. Townsend, N. Zojer et al., “IgM-expressing Waldenstrom's macroglobulinemia tumor cells reveal a potential for isotype switch events in vivo,” Leukemia, vol. 21, no. 4, pp. 827–830, 2007.
[136]
P. Martin-Jiménez, R. Garcia-Sanz, M. E. Sarasquete, et al., “Functional class switch recombination may occur “in vivo” in Waldenstrom macroglobulinaemia,” British Journal of Haematology, vol. 136, no. 1, pp. 114–116, 2007.
[137]
M. Varettoni, S. Zibellini, D. Capello, et al., “Clues to the pathogenesis of Waldenstrom macroglobulinemia and IgM-MGUS provided by the analysis of immunoglobulin heavy chain gene rearrangement and clustering of B-cell receptors,” Leukemia & Lymphoma, 2013.
[138]
M. J. Stone, “Pathogenesis and morbidity of autoantibody syndromes in Waldenstrom's macroglobulinemia,” Clinical Lymphoma, Myeloma and Leukemia, vol. 11, no. 1, pp. 157–159, 2011.
[139]
M. J. Stone and J. E. Fedak, “Studies on monoclonal antibodies. II. Immune complex (IgM IgG) cryoglobulinemia: the mechanism of cryoprecipitation,” Journal of Immunology, vol. 113, no. 4, pp. 1377–1385, 1974.
[140]
M. J. Stone, Y. G. McElroy, A. Pestronk, J. L. Reynolds, J. T. Newman, and A. W. Tong, “Human monoclonal macroglobulins with antibody activity,” Seminars in Oncology, vol. 30, no. 2, pp. 318–324, 2003.
[141]
E. Nobile-Orazio, “Antigenic determinants in IgM paraprotein-related neuropathies,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 107–109, 2009.
[142]
M. Kohler, H. Daus, and C. Kohler, “Lymphocytic plasmocytoid lymphoma with a three-banded gammopathy: reactivity of one of these paraproteins with cytomegalovirus,” Blut, vol. 54, no. 1, pp. 25–32, 1987.
[143]
J. Waldenstroem, S. Winblad, J. Haellen, and S. Liungman, “The occurrence of serological, “Antibody” reagins or similar gamma-globulins in conditions with monoclonal hypergammaglobulinemia, such as myeloma, macroglobulinemia Etc,” Acta medica Scandinavica, vol. 176, pp. 619–631, 1964.
[144]
V. Petru?i?, I. ?ivkovi?, M. Stojanovi? et al., “Antigenic specificity and expression of a natural idiotope on human pentameric and hexameric IgM polymers,” Immunologic Research, vol. 51, no. 1, pp. 97–107, 2011.
[145]
K. Preuss, G. Held, B. Kubuschok et al., “Identification of antigenic targets of paraproteins by expression cloning does not support a causal role of chronic antigenic stimulation in the pathogenesis of multiple myeloma and MGUS,” International Journal of Cancer, vol. 121, no. 2, pp. 459–461, 2007.
[146]
S. Grass, K. Preuss, S. Thome et al., “Paraproteins of familial MGUS/multiple myeloma target family-typical antigens: hyperphosphorylation of autoantigens is a consistent finding in familial and sporadic MGUS/MM,” Blood, vol. 118, no. 3, pp. 635–637, 2011.
[147]
S. Grass, K. Preuss, M. Ahlgrimm et al., “Association of a dominantly inherited hyperphosphorylated paraprotein target with sporadic and familial multiple myeloma and monoclonal gammopathy of undetermined significance: a case-control study,” The Lancet Oncology, vol. 10, no. 10, pp. 950–956, 2009.
[148]
S. R. Sompuram, G. Bastas, K. Vani, and S. A. Bogen, “Accurate identification of paraprotein antigen targets by epitope reconstruction,” Blood, vol. 111, no. 1, pp. 302–308, 2008.
[149]
M. Hecker, P. Lorenz, F. Steinbeck et al., “Computational analysis of high-density peptide microarray data with application from systemic sclerosis to multiple sclerosis,” Autoimmunity Reviews, vol. 11, no. 3, pp. 180–190, 2012.
[150]
C.-A. Reynaud, M. Descatoire, I. Dogan, F. Huetz, S. Weller, and J.-C. Weill, “IgM memory B cells: a mouse/human paradox,” Cellular and Molecular Life Sciences, vol. 69, no. 10, pp. 1625–1634, 2012.
[151]
K. L. Good-Jacobson and D. M. Tarlinton, “Multiple routes to B-cell memory,” International Immunology, vol. 24, no. 7, pp. 403–408, 2012.
[152]
U. Klein, K. Rajewsky, and R. Küppers, “Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells,” Journal of Experimental Medicine, vol. 188, no. 9, pp. 1679–1689, 1998.
[153]
S. G. Tangye, Y. Liu, G. Aversa, J. H. Phillips, and J. E. De Vries, “Identification of functional human splenic memory B cells by expression of CD148 and CD27,” Journal of Experimental Medicine, vol. 188, no. 9, pp. 1691–1703, 1998.
[154]
M. A. Berkowska, G. J. A. Driessen, V. Bikos et al., “Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways,” Blood, vol. 118, no. 8, pp. 2150–2158, 2011.
[155]
J. Kriangkum, B. J. Taylor, T. Reiman, A. R. Belch, and L. M. Pilarski, “Origins of Waldenstr?m's macroglobulinemia: does it arise from an unusual B-cell precursor?” Clinical Lymphoma, vol. 5, no. 4, pp. 217–219, 2005.
[156]
S. Crotty, P. Felgner, H. Davies, J. Glidewell, L. Villarreal, and R. Ahmed, “Cutting edge: long-term B cell memory in humans after Smallpox vaccination,” Journal of Immunology, vol. 171, no. 10, pp. 4969–4973, 2003.
[157]
M. Mamani-Matsuda, A. Cosma, S. Weller et al., “The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells,” Blood, vol. 111, no. 9, pp. 4653–4659, 2008.
[158]
I. J. Amanna, N. E. Carlson, and M. K. Slifka, “Duration of humoral immunity to common viral and vaccine antigens,” New England Journal of Medicine, vol. 357, no. 19, pp. 1903–1915, 2007.
[159]
D. Zotos and D. M. Tarlinton, “Determining germinal centre B cell fate,” Trends in Immunology, vol. 33, no. 6, pp. 281–288, 2012.
[160]
V. Peperzak, I. B. Vikstrom, and D. M. Tarlinton, “Through a glass less darkly: apoptosis and the germinal center response to antigen,” Immunological Reviews, vol. 247, no. 1, pp. 93–106, 2012.
[161]
U. Klein, R. Küppers, and K. Rajewsky, “Evidence for a large compartment of IgM-expressing memory B cells in humans,” Blood, vol. 89, no. 4, pp. 1288–1298, 1997.
[162]
H. White and D. Gray, “Analysis of immunoglobulin (Ig) isotype diversity and IgM/D memory in the response to phenyl-oxazolone,” Journal of Experimental Medicine, vol. 191, no. 12, pp. 2209–2219, 2000.
[163]
I. Dogan, B. Bertocci, V. Vilmont et al., “Multiple layers of B cell memory with different effector functions,” Nature Immunology, vol. 10, no. 12, pp. 1292–1299, 2009.
[164]
K. A. Pape, J. J. Taylor, R. W. Maul, P. J. Gearhart, and M. K. Jenkins, “Different B cell populations mediate early and late memory during an endogenous immune response,” Science, vol. 331, no. 6021, pp. 1203–1207, 2011.
[165]
M. C. van Zelm, T. Szczepański, M. Van Der Burg, and J. J. M. Van Dongen, “Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion,” Journal of Experimental Medicine, vol. 204, no. 3, pp. 645–655, 2007.
[166]
S. Weller, M. C. Braun, B. K. Tan et al., “Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire,” Blood, vol. 104, no. 12, pp. 3647–3654, 2004.
[167]
C. Wei, J. Anolik, A. Cappione et al., “A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus,” Journal of Immunology, vol. 178, no. 10, pp. 6624–6633, 2007.
[168]
Y. Miura, R. Shimazu, K. Miyake et al., “RP105 is associated with MD-1 and transmits an activation signal in human B cells,” Blood, vol. 92, no. 8, pp. 2815–2822, 1998.
[169]
P. Schneider, F. Mackay, V. Steiner et al., “BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1747–1756, 1999.
[170]
H. Shu, W. Hu, and H. Johnson, “TALL-1 is a novel member of the TNF family that is down-regulated by mitogens,” Journal of Leukocyte Biology, vol. 65, no. 5, pp. 680–683, 1999.
[171]
J. Moreaux, E. Legouffe, E. Jourdan et al., “BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone,” Blood, vol. 103, no. 8, pp. 3148–3157, 2004.
[172]
Y. Wu, D. Kipling, H. S. Leong, V. Martin, A. A. Ademokun, and D. K. Dunn-Walters, “High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations,” Blood, vol. 116, no. 7, pp. 1070–1078, 2010.
[173]
S. Weller, A. Faili, C. Garcia et al., “CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1166–1170, 2001.
[174]
C. S. Ma, S. Pittaluga, D. T. Avery et al., “Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease,” Journal of Clinical Investigation, vol. 116, no. 2, pp. 322–333, 2006.
[175]
K. Warnatz, L. Bossaller, U. Salzer et al., “Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency,” Blood, vol. 107, no. 8, pp. 3045–3052, 2006.
[176]
S. Weller, M. Bonnet, H. Delagreverie, et al., “IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients,” Blood, vol. 120, no. 25, pp. 4992–5001, 2012.
[177]
S. Lin, Y. Lo, and H. Wu, “Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling,” Nature, vol. 465, no. 7300, pp. 885–890, 2010.
[178]
T. Kawagoe, S. Sato, K. Matsushita et al., “Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2,” Nature Immunology, vol. 9, no. 6, pp. 684–691, 2008.
[179]
C. Keim, D. Kazadi, G. Rothschild, and U. Basu, “Regulation of AID, the B-cell genome mutator,” Genes & Development, vol. 27, pp. 1–17, 2013.
[180]
S. Weller, M. Mamani-Matsuda, C. Picard et al., “Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+IgD+CD27+ B cell repertoire in infants,” Journal of Experimental Medicine, vol. 205, no. 6, pp. 1331–1342, 2008.
[181]
F. A. Scheeren, M. Nagasawa, K. Weijer et al., “T cell-independent development and induction of somatic hypermutation in human IgM+IgD+CD27+ B cells,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 2033–2042, 2008.
[182]
A. Tierens, J. Delabie, L. Michiels, P. Vandenberghe, and C. De Wolf-Peeters, “Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion,” Blood, vol. 93, no. 1, pp. 226–234, 1999.
[183]
I. Puga, M. Cols, C. M. Barra, et al., “B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen,” Nature Immunology, vol. 13, no. 2, pp. 170–180, 2012.
[184]
F. Capolunghi, S. Cascioli, E. Giorda et al., “CpG drives human transitional B cells to terminal differentiation and production of natural antibodies,” Journal of Immunology, vol. 180, no. 2, pp. 800–808, 2008.
[185]
A. Aranburu, S. Ceccarelli, E. Giorda, R. Lasorella, G. Ballatore, and R. Carsetti, “TLR ligation triggers somatic hypermutation in transitional B cells inducing the generation of IgM memory B cells,” Journal of Immunology, vol. 185, no. 12, pp. 7293–7301, 2010.
[186]
R. Ettinger, G. P. Sims, R. Robbins et al., “IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells,” Journal of Immunology, vol. 178, no. 5, pp. 2872–2882, 2007.
[187]
J. L. Karnell and R. Ettinger, “The interplay of IL-21 and BAFF in the formation and maintenance of human B cell memory,” Frontiers in Immunology, vol. 3, no. 2, 2012.
[188]
D. O. Griffin, N. E. Holodick, and T. L. Rothstein, “Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70,” Journal of Experimental Medicine, vol. 208, no. 1, pp. 67–80, 2011.
[189]
D. O. Griffin and T. L. Rothstein, “Human b1 cell frequency: isolation and analysis of human b1 cells,” Frontiers in Immunology, vol. 3, no. 122, 2012.
[190]
X. Zhong, W. Gao, N. Degauque, et al., “Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells,” European Journal of Immunology, vol. 37, no. 9, pp. 2400–2404, 2007.
[191]
A. B. Kantor, C. E. Merrill, L. A. Herzenberg, and J. L. Hillson, “An Unbiased Analysis of VH-D-JH Sequences from B-1a, B-1b, and Conventional B Cells,” Journal of Immunology, vol. 158, no. 3, pp. 1175–1186, 1997.
[192]
N. Baumgarth, “The double life of a B-1 cell: self-reactivity selects for protective effector functions,” Nature Reviews Immunology, vol. 11, no. 1, pp. 34–46, 2011.
[193]
M. Descatoire, J. Weill, C. Reynaud, and S. Weller, “A human equivalent of mouse B-1 cells?” Journal of Experimental Medicine, vol. 208, no. 13, pp. 2563–2564, 2011.
[194]
P. Martin, G. Christina, C. Teodosio, J. J. M. van Dongen, A. Orfao, and M. C. van Zelm, “The nature of circulating CD27+CD43+ B cells,” Journal of Experimental Medicine, vol. 208, no. 13, pp. 2565–2566, 2011.
[195]
S. G. Tangye and K. L. Good, “Human IgM+CD27+ B cells: memory B cells or “memory” B cells?” Journal of Immunology, vol. 179, no. 1, pp. 13–19, 2007.
[196]
M. Seifert and R. Küppers, “Molecular footprints of a germinal center derivation of human IgM +(IgD+)CD27 + B cells and the dynamics of memory B cell generation,” Journal of Experimental Medicine, vol. 206, no. 12, pp. 2659–2669, 2009.
[197]
J. Weill, S. Weller, and C. Reynaud, “Human marginal zone B cells,” Annual Review of Immunology, vol. 27, pp. 267–285, 2009.
[198]
M. Rakhmanov, B. Keller, S. Gutenberger et al., “Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13451–13456, 2009.
[199]
K. Warnatz, A. Denz, R. Dr?ger et al., “Severe deficiency of switched memory B cells (CD27+IgM-IgD-) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease,” Blood, vol. 99, no. 5, pp. 1544–1551, 2002.
[200]
N. Gachard, M. Parrens, I. Soubeyran, et al., “IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom macroglobulinemia/lymphoplasmacytic lymphomas,” Leukemia, vol. 27, pp. 183–189, 2013.
[201]
S. Poulain, C. Roumier, A. Decambron, et al., “MYD88 L265P mutation in Waldenstrom's macroglogulinemia,” Blood, 2013.
[202]
M. Varettoni, L. Arcaini, S. Zibellini, et al., “Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom's macroglobulinemia and related lymphoid neoplasms,” Blood, vol. 121, no. 13, pp. 2522–2528, 2013.
[203]
L. Xu, Z. R. Hunter, G. Yang, et al., “MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction,” Blood, vol. 121, no. 11, pp. 2051–2058, 2013.
[204]
M. Loiarro, G. Gallo, N. Fantò et al., “Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28093–28103, 2009.
[205]
L. Wang, M. S. Lawrence, Y. Wan, et al., “SF3B1 and other novel cancer genes in chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 365, pp. 2497–2506, 2011.
[206]
V. N. Ngo, R. M. Young, R. Schmitz et al., “Oncogenically active MYD88 mutations in human lymphoma,” Nature, vol. 470, no. 7332, pp. 115–121, 2011.
[207]
L. Pasqualucci, V. Trifonov, G. Fabbri et al., “Analysis of the coding genome of diffuse large B-cell lymphoma,” Nature Genetics, vol. 43, no. 9, pp. 830–837, 2011.
[208]
X. S. Puente, M. Pinyol, V. Quesada, et al., “Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia,” Nature, vol. 475, pp. 101–105, 2011.
[209]
M. Montesinos-Rongen, E. Godlewska, A. Brunn, O. D. Wiestler, R. Siebert, and M. Deckert, “Activating L265P mutations of the MYD88 gene are common in primary central nervous system lymphoma,” Acta Neuropathologica, vol. 122, no. 6, pp. 791–792, 2011.
[210]
P. Tassone, P. Neri, J. L. Kutok et al., “A SCID-hu in vivo model of human Waldenstr?m macroglobulinemia,” Blood, vol. 106, no. 4, pp. 1341–1345, 2005.
[211]
A. S. Tsingotjidou, C. E. Emmanouilides, E. Siotou, et al., “Establishment of an animal model for Waldenstrom's macroglobulinemia,” Experimental Hematology, vol. 37, no. 4, pp. 469–476, 2009.
[212]
A. Al-Katib, R. Mohammad, M. Hamdan, A. N. Mohamed, M. Dan, and M. R. Smith, “Propagation of Waldenstrom's macroglobulinemia cells in vitro and in severe combined immune deficient mice: utility as a preclinical drug screening model,” Blood, vol. 81, no. 11, pp. 3034–3042, 1993.
[213]
A. M. Al-Katib, E. Mensah-Osman, A. Aboukameel, and R. Mohammad, “The Wayne State University Waldenstrom's Macroglobulinemia preclinical model for Waldenstrom's macroglobulinemia,” Seminars in Oncology, vol. 30, no. 2, pp. 313–317, 2003.
[214]
E. J. Mensah-Osman, A. M. Al-Katib, and R. M. Mohammad, “Preclinical Evaluation of 2-[4-(7-Chloro-2-quinoxalinyloxy)phenoxy]-propionic Acid as a Modulator of Etoposide in Human Waldenstrom's Macroglobulinemia Xenograft Model,” Clinical Cancer Research, vol. 9, no. 15, pp. 5794–5797, 2003.
[215]
D. Ditzel Santos, A. W. Ho, O. Tournilhac et al., “Establishment of BCWM.1 cell line for Waldenstr?m's macroglobulinemia with productive in vivo engraftment in SCID-hu mice,” Experimental Hematology, vol. 35, no. 9, pp. 1366–1375, 2007.
[216]
P. L. Bergsagel and W. M. Kuehl, “WSU-WM and BCWM.1 should not be assumed to represent Waldenstr?m macroglobulinemia cell lines,” Blood, vol. 112, no. 3, p. 917, 2008.
[217]
L. S. Hodge, A. J. Novak, D. M. Grote et al., “Establishment and characterization of a novel Waldenstr?m macroglobulinemia cell line, MWCL-1,” Blood, vol. 117, no. 19, pp. e190–e197, 2011.
[218]
K. S. Chitta, A. Paulus, S. Ailawadhi, et al., “Development and characterization of a novel human Waldenstrom macroglobulinemia cell line: RPCI-WM1, Roswell Park Cancer Institute-Waldenstrom Macroglobulinemia 1,” Leukemia & Lymphoma, vol. 54, no. 2, pp. 387–396, 2013.
[219]
M. Potter, “Neoplastic development in plasma cells,” Immunological Reviews, vol. 194, pp. 177–195, 2003.
[220]
M. Potter, J. G. Pumphrey, and D. W. Bailey, “Genetics of susceptibility to plasmacytoma induction. I. BALB/cAnN (C), C57BL/6N (B6), C57BL/Ka (BK), (C x B6)F1, (C x BK)F1, and C x B recombinant inbred strains,” Journal of the National Cancer Institute, vol. 54, no. 6, pp. 1413–1417, 1975.
[221]
S.-L. Zhang, W. DuBois, E. S. Ramsay et al., “Efficiency alleles of the Pctr1 modifier locus for plasmacytoma susceptibility,” Molecular and Cellular Biology, vol. 21, no. 1, pp. 310–318, 2001.
[222]
V. Bliskovsky, E. S. Ramsay, J. Scott et al., “Frap, FKBP12 rapamycin-associated protein, is a candidate gene for the plasmacytoma resistance locus Pctr2 and can act as a tumor suppressor gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14982–14987, 2003.
[223]
K. Zhang, D. Kagan, W. DuBois et al., “Mndal, a new interferon-inducible family member, is highly polymorphic, suppresses cell growth, and may modify plasmacytoma susceptibility,” Blood, vol. 114, no. 14, pp. 2952–2960, 2009.
[224]
D. S. Hong, L. S. Angelo, and R. Kurzrock, “Interleukin-6 and its receptor in cancer: implications for translational therapeutics,” Cancer, vol. 110, no. 9, pp. 1911–1928, 2007.
[225]
R. Kurzrock, J. Redman, F. Cabanillas, D. Jones, J. Rothberg, and M. Talpaz, “Serum interleukin 6 levels are elevated in lymphoma patients and correlate with survival in advanced Hodgkin's disease and with B symptoms,” Cancer Research, vol. 53, no. 9, pp. 2118–2122, 1993.
[226]
L. T. Lam, G. Wright, R. E. Davis et al., “Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-kκB pathways in subtypes of diffuse large B-cell lymphoma,” Blood, vol. 111, no. 7, pp. 3701–3713, 2008.
[227]
N. Nishimoto, Y. Kanakura, K. Aozasa et al., “Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease,” Blood, vol. 106, no. 8, pp. 2627–2632, 2005.
[228]
B. Klein, K. Tarte, M. Jourdan, et al., “Survival and proliferation factors of normal and malignant plasma cells,” International Journal of Hematology, vol. 78, no. 2, pp. 106–113, 2003.
[229]
M. Potter and C. L. Robertson, “Development of plasma-cell neoplasms in BALB/c mice after,” Journal of the National Cancer Institute, vol. 25, pp. 847–861, 1960.
[230]
E. Shacter, G. K. Arzadon, and J. Williams, “Elevation of interleukin-6 in response to a chronic inflammatory stimulus in mice:inhibition by indomethacin,” Blood, vol. 80, no. 1, pp. 194–202, 1992.
[231]
A. Vink, P. Coulie, G. Warnier et al., “Mouse plasmacytoma growth in vivo: enhancement by interleukin 6 (IL-6) and inhibition by antibodies directed against IL-6 or its receptor,” Journal of Experimental Medicine, vol. 172, no. 3, pp. 997–1000, 1990.
[232]
G. Lattanzio, C. Libert, M. Aquilina et al., “Defective development of pristane-oil-induced plasmacytomas in interleukin-6-deficient BALB/c mice,” American Journal of Pathology, vol. 151, no. 3, pp. 689–696, 1997.
[233]
D. M. Hilbert, M. Kopf, B. A. Mock, G. K?hler, and S. Rudikoff, “Interleukin 6 is essential for in vivo development of B lineage neoplasms,” Journal of Experimental Medicine, vol. 182, no. 1, pp. 243–248, 1995.
[234]
A. L. Kovalchuk, J. S. Kim, S. S. Park, et al., “IL-6 transgenic mouse model for extraosseous plasmacytoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1509–1514, 2002.
[235]
A. M. Ranger, B. A. Malynn, and S. J. Korsmeyer, “Mouse models of cell death,” Nature Genetics, vol. 28, no. 2, pp. 113–118, 2001.
[236]
R. P. Bissonnette, F. Echeverri, A. Mahboubi, and D. R. Green, “Apoptotic cell death induced by c-myc is inhibited by bcl-2,” Nature, vol. 359, no. 6395, pp. 552–554, 1992.
[237]
G. I. Evan, A. H. Wyllie, C. S. Gilbert et al., “Induction of apoptosis in fibroblasts by c-myc protein,” Cell, vol. 69, no. 1, pp. 119–128, 1992.
[238]
D. L. Vaux, S. Cory, and J. M. Adams, “Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells,” Nature, vol. 335, no. 6189, pp. 440–442, 1988.
[239]
A. Strasser, A. W. Harris, M. L. Bath, and S. Cory, “Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2,” Nature, vol. 348, no. 6299, pp. 331–333, 1990.
[240]
C. M. Eischen, D. Woo, M. F. Roussel, and J. L. Cleveland, “Apoptosis triggered by Myc-induced suppression of Bcl-XL or Bcl-2 is bypassed during lymphomagenesis,” Molecular and Cellular Biology, vol. 21, no. 15, pp. 5063–5070, 2001.
[241]
T. J. McDonnell, N. Deane, F. M. Platt et al., “bcl-2-Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation,” Cell, vol. 57, no. 1, pp. 79–88, 1989.
[242]
A. Strasser, A. W. Harris, D. L. Vaux et al., “Abnormalities of the immune system induced by dysregulated bcl-2 expression in transgenic mice,” Current Topics in Microbiology and Immunology, vol. 166, pp. 175–181, 1990.
[243]
T. J. McDonnell and S. J. Korsmeyer, “Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic in mice transgenic for the t(14; 18),” Nature, vol. 349, no. 6306, pp. 254–257, 1991.
[244]
A. Strasser, A. W. Harris, and S. Cory, “Eμ-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells,” Oncogene, vol. 8, no. 1, pp. 1–9, 1993.
[245]
C. Brunner, D. Marinkovic, J. Klein, T. Samardzic, L. Nitschke, and T. Wirth, “B cell-specific transgenic expression of Bcl2 rescues early B lymphopoiesis but not B cell responses in BOB.1/OBF.1-deficient mice,” Journal of Experimental Medicine, vol. 197, no. 9, pp. 1205–1211, 2003.
[246]
J. J. Kenny, L. J. Rezanka, A. Lustig et al., “Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors,” Journal of Immunology, vol. 164, no. 8, pp. 4111–4119, 2000.
[247]
D. Corcos, A. Grandien, A. Vazquez, O. Dunda, P. Lorès, and D. Bucchini, “Expression of a V region-less B cell receptor confers a tolerance-like phenotype on transgenic B cells,” Journal of Immunology, vol. 166, no. 5, pp. 3083–3089, 2001.
[248]
N. R. Ruetsch, G. C. Bosma, and M. J. Bosma, “Unexpected rearrangement and expression of the immunoglobulin λ1 locus in scid mice,” Journal of Experimental Medicine, vol. 191, no. 11, pp. 1933–1943, 2000.
[249]
M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo, “Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme,” Cell, vol. 102, no. 5, pp. 553–563, 2000.
[250]
P. Revy, T. Muto, Y. Levy et al., “Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2),” Cell, vol. 102, no. 5, pp. 565–575, 2000.
[251]
J. Di Noia and M. S. Neuberger, “Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase,” Nature, vol. 419, no. 6902, pp. 43–48, 2002.
[252]
A. R. Ramiro, M. Jankovic, T. Eisenreich et al., “AID is required for c-myc/IgH chromosome translocations in vivo,” Cell, vol. 118, no. 4, pp. 431–438, 2004.
[253]
A. L. Kovalchuk, W. DuBois, E. Mushinski et al., “AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements,” Journal of Experimental Medicine, vol. 204, no. 12, pp. 2989–3001, 2007.
[254]
M. Takizawa, H. T. á, Z. Li et al., “AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 1949–1957, 2008.
[255]
W. F. Davidson, T. Giese, and T. N. Fredrickson, “Spontaneous development of plasmacytoid tumors in mice with defective fas-fas ligand interactions,” Journal of Experimental Medicine, vol. 187, no. 11, pp. 1825–1838, 1998.
[256]
J. Q. Zhang, C. Okumura, T. McCarty et al., “Evidence for selective transformation of autoreactive immature plasma cells in mice deficient in Fasl,” Journal of Experimental Medicine, vol. 200, no. 11, pp. 1467–1478, 2004.
[257]
J. W. Hartley, S. K. Chattopadhyay, M. R. Lander et al., “Accelerated appearance of multiple B cell lymphoma types in NFS/N mice congenic for ecotropic murine leukemia viruses,” Laboratory Investigation, vol. 80, no. 2, pp. 159–169, 2000.
[258]
C. Qi, D. Shin, Z. Li et al., “Anaplastic plasmacytomas: relationships to normal memory B cells and plasma cell neoplasms of immunodeficient and autoimmune mice,” Journal of Pathology, vol. 221, no. 1, pp. 106–116, 2010.
[259]
M. Gostissa, J. M. Bianco, M. D. Bianco, et al., “Conditional inactivation of p53 in mature B cells promotes generation of nongerminal center-derived B-cell lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 8, pp. 2934–2939, 2013.
[260]
K. M. Nickerson, S. R. Christensen, J. Shupe et al., “TLR9 regulates TLR7- And MyD88-dependent autoantibody production and disease in a murine model of lupus,” Journal of Immunology, vol. 184, no. 4, pp. 1840–1848, 2010.
[261]
L. L. Teichmann, D. Schenten, R. Medzhitov, M. Kashgarian, and M. J. Shlomchik, “Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus,” Immunity, vol. 38, no. 3, pp. 528–540, 2013.
[262]
S. Silva, A. L. Kovalchuk, J. S. Kim, G. Klein, and S. Janz, “BCL2 Accelerates Inflammation-induced BALB/c Plasmacytomas and Promotes Novel Tumors with Coexisting T(12;15) and T(6;15) Translocations,” Cancer Research, vol. 63, no. 24, pp. 8656–8663, 2003.