The sponge of Luffa cylindrical (LFC), a fibrous material, was employed as adsorbent for the removal of Brilliant Green (BGD) from aqueous effluent via batch studies. The optimum removal of BGD was found at pH 8.2 and the equilibrium was attained within 3 hours. The kinetic data are analyzed using several models including pseudo-first-order, pseudo-second-order, power function, simple elovich, intraparticle diffusion, and liquid film diffusion. The fitting of the different kinetics models to the experimental data, tested by error analysis, using the linear correlation coefficient and chi-square analysis , showed that the mechanism of adsorption process was better described by pseudo-second-order and power function kinetic models. The equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models and the sorption process was described by the Langmuir isotherm with maximum monolayer adsorption capacity of 18.2?mg/g at 303?K. The thermodynamic properties , , and showed that adsorption of BGD onto LFC was spontaneous, endothermic, and feasible within the temperature range of 303–313?K. 1. Introduction Worldwide, over tons of dyes and pigments are produced annually [1] and an estimated 90% of this ends up on fabrics [2]. Due to the development of textile, printing, and tanning industries, large amounts of dye water waste are produced [3]. The textile industry alone accounts for two-third of the total dye stuff production and about 10 to 15% of the used dyes come out through the effluent [4]. Wastewater containing dyes is difficult to treat, since the dyes are recalcitrant organic molecules, resistant to aerobic digestion and are stable to light, heat, and oxidizing agents [5]. Efficient color removal from wastewaters is, therefore, of high importance, and so in recent years, it has attracted increased research and technological interest, involving physical and/or chemical methods (i.e., coagulation/flocculation) [6], adsorption [7], oxidation [8], and membrane based separation [9–11]. Amongst all these treatment methods, adsorption is the most appropriate and efficient technique for the removal of nonbiodegradable pollutants (including dyes) from waste water [12, 13]. Although many adsorbents have been reported for removing some common dyes [14–19], such as methyl orange, methylene blue, Congo Red, and Brilliant Green (Figure 1), activated carbon has proven to be the most widely used adsorbent for the removal of dye but this has been restricted due to regeneration problem and high cost [20]. Figure 1: Brilliant Green. Recently,
References
[1]
C. I. Pearce, J. R. Lloyd, and J. T. Guthrie, “The removal of colour from textile wastewater using whole bacterial cells: a review,” Dyes and Pigments, vol. 58, no. 3, pp. 179–196, 2003.
[2]
A. R. Cestari, E. F. S. Vieira, G. S. Vieira, and L. E. Almeida, “The removal of anionic dyes from aqueous solutions in the presence of anionic surfactant using aminopropylsilica-A kinetic study,” Journal of Hazardous Materials, vol. 138, no. 1, pp. 133–141, 2006.
[3]
Q. J. Qian, H. Z. Xiao, Y. X. Xiang, and Z. R. Tie, “Adsorptive removal of cationic dyes from aqueous solutions using graphite oxide,” Journal of Adsorption Science and Technology, vol. 30, no. 5, pp. 437–447, 2012.
[4]
T. K. Sen, S. Afroze, and H. M. Ang, “Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata,” Water, Air, and Soil Pollution, vol. 218, no. 1–4, pp. 499–515, 2011.
[5]
T. Akar, A. S. Ozcan, S. Tunali, and A. Ozcan, “Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis: estimation of equilibrium, thermodynamic and kinetic parameters,” Bioresource Technology, vol. 99, no. 8, pp. 3057–3065, 2008.
[6]
M. J. Pollock, “Neutralizing dyehouse wastes with flue gases and decolorizing with fly ash,” The American Dyestuff Reporter, vol. 62, no. 8, pp. 21–23, 1973.
[7]
M. K. Purkait, A. Maiti, S. DasGupta, and S. De, “Removal of congo red using activated carbon and its regeneration,” Journal of Hazardous Materials, vol. 145, no. 1-2, pp. 287–295, 2007.
[8]
M. G. Eilbeck, Chemical Process in Water Waste Treatment, John Wiley & Sons, Chichester, UK, 1985.
[9]
M. K. Purkait, S. DasGupta, and S. De, “Micellar enhanced ultrafiltration of eosin dye using hexadecyl pyridinium chloride,” Journal of Hazardous Materials, vol. 136, no. 3, pp. 972–977, 2006.
[10]
M. K. Purkait, S. DasGupta, and S. De, “Removal of dye from waste water using micellar enhanced ultra fitrationn and recovery of surfactant,” Journal of Separation and Purification Technology, vol. 37, pp. 81–92, 2003.
[11]
S. Chakraborty, M. K. Purkait, S. DasGupta, S. De, and J. K. Basu, “Nanofiltration of textile plant effluent for color removal and reduction in COD,” Separation and Purification Technology, vol. 31, no. 2, pp. 141–151, 2003.
[12]
M. Mohammadi, A. J. Hassani, A. R. Mohamed, and G. D. Najafpour, “Removal of rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies,” Journal of Chemical and Engineering Data, vol. 55, no. 12, pp. 5777–5785, 2010.
[13]
G. Crini, “Non-conventional low-cost adsorbents for dye removal: a review,” Bioresource Technology, vol. 97, no. 9, pp. 1061–1085, 2006.
[14]
M. Do?an, Y. ?zdemir, and M. Alkan, “Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite,” Dyes and Pigments, vol. 75, no. 3, pp. 701–713, 2007.
[15]
C. Chen, M. Zhang, Q. Guan, and W. Li, “Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101(Cr),” Chemical Engineering Journal, vol. 183, pp. 60–67, 2012.
[16]
Z. Ioannou, C. Karasavvidis, A. Dimirkou, and V. Antoniadis, “Adsorption of methylene blue and methyl red dye from aqueous solutions onto modified zeolite,” Journal of Water Science and Technology, vol. 67, no. 5, pp. 1129–1136, 2013.
[17]
N. A. Oladoja, C. O. Aboluwoye, and A. O. Akinkugbe, “Evaluation of loofah as a sorbent in the decolorization of basic dye contaminated aqueous system,” Industrial and Engineering Chemistry Research, vol. 48, no. 6, pp. 2786–2794, 2009.
[18]
J. C. Liu, S. Ma, and L. J. Zang, “Preparation and characterization of ammonium-functionalized silica nano particle as new adsorbent to remove methyl orange from aqueous solution,” Journal of Applied Surface Science, vol. 265, pp. 393–398, 2013.
[19]
B. K. Nandi, A. Goswami, and M. K. Purkait, “Adsorption characteristics of brilliant green dye on kaolin,” Journal of Hazardous Materials, vol. 161, no. 1, pp. 387–395, 2009.
[20]
I. D. Mall, V. C. Srivastava, and N. K. Agarwal, “Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses,” Dyes and Pigments, vol. 69, no. 3, pp. 210–223, 2006.
[21]
R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, and Y. Sun, “Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution,” Dyes and Pigments, vol. 64, no. 3, pp. 187–192, 2005.
[22]
A. Z. Aroguz, J. Gulen, and R. H. Evers, “Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment,” Bioresource Technology, vol. 99, no. 6, pp. 1503–1508, 2008.
[23]
N. A. Oladoja and A. K. Akinlabi, “Congo red biosorption on palm kernel seed coat,” Industrial and Engineering Chemistry Research, vol. 48, no. 13, pp. 6188–6196, 2009.
[24]
S. Dawood and T. K. Sen, “Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design,” Water Research, vol. 46, no. 6, pp. 1933–1946, 2012.
[25]
R. L. M. Allen, Colour Chemistry, Appleton-Century Crofts Education Division, 1971.
[26]
A. Mittal, D. Kaur, and J. Mittal, “Applicability of waste materials—bottom ash and deoiled soya—as adsorbents for the removal and recovery of a hazardous dye, brilliant green,” Journal of Colloid and Interface Science, vol. 326, no. 1, pp. 8–17, 2008.
[27]
Y. Kismir and A. Z. Aroguz, “Adsorption characteristics of the hazardous dye brilliant green on Sakl?kent mud,” Chemical Engineering Journal, vol. 172, no. 1, pp. 199–206, 2011.
[28]
H. W. Yeung, W. W. Li, and T. B. Ng, “Isolation of a ribosome-inactivating and abortifacient protein from seeds of Luffa acutangula,” International Journal of Peptide and Protein Research, vol. 38, no. 1, pp. 15–19, 1991.
[29]
H. Demir, A. Top, D. Balk?se, and S. ülkü, “Dye adsorption behavior of Luffa cylindrica fibers,” Journal of Hazardous Materials, vol. 153, no. 1-2, pp. 389–394, 2008.
[30]
O. Abdelwahab, “Evaluation of the use of loofa activated carbons as potential adsorbents for aqueous solutions containing dye,” Desalination, vol. 222, no. 1–3, pp. 357–367, 2008.
[31]
K. G. Bhattacharyya and A. Sarma, “Adsorption characteristics of the dye, brilliant green, on neem leaf powder,” Dyes and Pigments, vol. 57, no. 3, pp. 211–222, 2003.
[32]
V. S. Mane, I. D. Mall, and V. C. Srivastava, “Kinetic and equilibrium isotherm studies for the adsorptive removal of brilliant green dye from aqueous solution by rice husk ash,” Journal of Environmental Management, vol. 84, no. 4, pp. 390–400, 2007.
[33]
L. S. Balistrieri and J. W. Murray, “The surface chemistry of goethite (alpha-FeOOH) in major ion seawater,” The American Journal of Science, vol. 281, no. 6, pp. 788–806, 1981.
[34]
A. I. Vogel, Text Book of Practical Organic Chemistry, Longman, London, UK, 1970.
[35]
V. O. A. Tanobe, T. H. D. Sydenstricker, M. Munaro, and S. C. Amico, “A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica),” Polymer Testing, vol. 24, no. 4, pp. 474–482, 2005.
[36]
M. A. H. Hassan, L. M. A. Fayoumi, and M. M. Jamal, “Kinetic study of the discoloration of triphenylmethane dyes as a function of pH, salt effect,” Journal of the University of Chemical Technology and Metallurgy, vol. 46, pp. 395–400, 2011.
[37]
J. D. Roberts and M. C. Caserio, Basic Principle of Organic Chemistry, W. A. Benjamin, Inc., Menlo Park, Calif, USA, 2nd edition, 1977.
[38]
O. K. Júnior, L. V. A. Gurgel, R. P. de Freitas, and L. F. Gil, “Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD),” Carbohydrate Polymers, vol. 77, no. 3, pp. 643–650, 2009.
[39]
A. C. A. da Costa, L. M. S. de Mesquita, and J. Tornovsky, “Batch and continuous heavy metals biosorption by a brown seaweed from a zinc-producing plant,” Minerals Engineering, vol. 9, no. 8, pp. 811–824, 1996.
[40]
Q. Sun and L. Yang, “The adsorption of basic dyes from aqueous solution on modified peat-resin particle,” Water Research, vol. 37, no. 7, pp. 1535–1544, 2003.
[41]
S. Lanregren, “About the theory of so-called adsorption of soluble substances,” Kungliga Svenska Vetenskapsakademiens Handlingar, vol. 24, no. 4, pp. 1–39, 1889.
[42]
Y. S. Ho, “Review of second-order models for adsorption systems,” Journal of Hazardous Materials, vol. 136, no. 3, pp. 681–689, 2006.
[43]
L. Zeng, X. M. Li, and J. D. Liu, “Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings,” Water Research, vol. 38, no. 5, pp. 1318–1326, 2004.
[44]
J. Zeldowitsch, “über den mechanismus der katalytischen oxydation von CO an MnO2,” Acta Physicochimica URSS, vol. 1, pp. 449–464, 1934.
[45]
Y. S. Ho and G. McKay, “Sorption of dye from aqueous solution by peat,” Chemical Engineering Journal, vol. 70, no. 2, pp. 115–124, 1998.
[46]
Y. S. Ho and A. E. Ofomaja, “Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber,” Journal of Hazardous Materials, vol. 129, no. 1–3, pp. 137–142, 2006.
[47]
Y. S. Ho and G. McKay, “A kinetic study of dye sorption by biosorbent waste product pith,” Resources, Conservation and Recycling, vol. 25, no. 3-4, pp. 171–193, 1999.
[48]
W. J. Weber and J. C. Morris, “Kinetics of adsorption on carbon from solution,” Journal of Sanitary Engineering Division, vol. 89, pp. 31–59, 1963.
[49]
N. Kannan and M. M. Sundaram, “Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study,” Dyes and Pigments, vol. 51, no. 1, pp. 25–40, 2001.
[50]
K. K. Panday, G. Prasad, and V. N. Singh, “Copper(II) removal from aqueous solutions by fly ash,” Water Research, vol. 19, no. 7, pp. 869–873, 1985.
[51]
U. R. Lakshmi, V. C. Srivastava, I. D. Mall, and D. H. Lataye, “Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for indigo carmine dye,” Journal of Environmental Management, vol. 90, no. 2, pp. 710–720, 2009.
[52]
V. S. Mane and P. V. V. Babu, “Studies on the adsorption of brilliant green dye from aqueous solution onto low-cost NaOH treated saw dust,” Desalination, vol. 273, no. 2-3, pp. 321–329, 2011.
[53]
G. E. Boyd, A. W. Adamson, and L. S. Myers Jr., “The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics,” Journal of the American Chemical Society, vol. 69, no. 11, pp. 2836–2848, 1947.
[54]
Y. S. Ho, T. H. Chiang, and Y. M. Hsueh, “Removal of basic dye from aqueous solution using tree fern as a biosorbent,” Process Biochemistry, vol. 40, no. 1, pp. 119–124, 2005.
[55]
K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions,” Industrial and Engineering Chemistry Fundamentals, vol. 5, no. 2, pp. 212–223, 1966.
[56]
H. M. F. Freundlich, “Ube die adsorption in losurgen,” Zeitschrift für Physikalische Chemie A, vol. 57, pp. 385–470, 1906.
[57]
V. S. Mane, I. D. Mall, and V. C. Srivastava, “Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution,” Dyes and Pigments, vol. 73, no. 3, pp. 269–278, 2007.
[58]
I. A. W. Tan, B. H. Hameed, and A. L. Ahmad, “Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon,” Chemical Engineering Journal, vol. 127, no. 1–3, pp. 111–119, 2007.
[59]
G. A. Holdgate and W. H. J. Ward, “Measurements of binding thermodynamics in drug discovery,” Drug Discovery Today, vol. 10, no. 22, pp. 1543–1550, 2005.
[60]
P. V. Messina and P. C. Schulz, “Adsorption of reactive dyes on titania-silica mesoporous materials,” Journal of Colloid and Interface Science, vol. 299, no. 1, pp. 305–320, 2006.