Room temperature ionic liquids (RTILs) are the environment-friendly alternatives for organic volatile solvents in a host of synthetic, catalytic, and electrochemical applications. These are also being used for various R&D works in nuclear fuel cycle research such as the recovery and purification of nuclides of interest from spent nuclear fuel matrices. In this work, density, refractive index ( ) at sodium line, and thermodynamic water activity of the aqueous solution of 1-hexyl-3-methyl imidazolium bromide were determined in dilute aqueous solutions at 298.15?K. These results were used to calculate the apparent molal volumes of each solute over various concentration ranges. The measurements were performed as per ASTM procedures. Vapour pressure was derived using water activity values. Information on excess properties and structural interaction was also reported. 1. Introduction Room temperature ionic liquids are considered as young chemicals having variety a of applications in all types of areas in chemical industry due to their unique properties. They are referred to as designer solvents as we can design them for different reactions by changing the cation and anion. They can act as both polar and nonpolar solvents which minimizes the use of lot of chemicals making our environment neat and clean and thus referred to as “green solvent” [1]. Researchers have found that ionic liquids are more than a solvent and have several applications in electrochemistry, biological media, catalysis, organic synthesis, and so on [2–7]. Low vapour pressure, thermal stability, high thermal conductivity, large electrochemical window, and nonflammability are some of their properties which make them an innovative solvent. As a solvent, ionic liquids possesses several advantages over conventional organic solvents making it environmentally compatible [8]. The potential advantage of ionic liquids depends upon their thermophysical properties like density, refractive index, activity, vapour pressure, conductivities, viscosities, and so forth. Various research groups have studied the thermophysical properties of various ionic liquids to extract important information about them [9–16]. RTILs are extensively used for the extraction of metal ions in solvent extraction [17–19]. In nuclear industry these are used as green solvent for the extraction of various fission products in liquid-liquid extraction [20–22]. Currently, variants of 1,3 dialkyl imidazolium salt are being tried in processing of materials. In this paper one of such 1,3-dialkyl imidazolium salts that is, 1-hexyl-3-methyl
References
[1]
J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, and R. D. Rogers, “Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction,” Chemical Communications, no. 16, pp. 1765–1766, 1998.
[2]
T. Welton, “Room temperature ionic liquids. Solvents for synthesis and catalysis,” Chemical Reviews, vol. 99, no. 8, pp. 2071–2084, 1999.
[3]
K. A. Venkatesan, T. G. Srinivasan, and P. R. V. Rao, “A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle,” Journal of Nuclear and Radiochemical Sciences, vol. 10, pp. R1–R6, 2009.
[4]
N. V. Plechkova and K. R. Seddon, “Applications of ionic liquids in the chemical industry,” Chemical Society Reviews, vol. 37, no. 1, pp. 123–150, 2008.
[5]
T. Tseuda and C. L. Hussey, “Electrochemical application of Room-Temperature ionic liquids,” in The Electrochemical Society Interface, InTech, Shanghai, China, 2007.
[6]
P. R.V. Rao, K. A. Venkatesan, and T. G. Srinivasan, “Studies on applications of room temperature ionic liquids,” Progress in Nuclear Energy, vol. 50, no. 2–6, pp. 449–455, 2008.
[7]
J. A. Whitehead, J. Zhang, N. Pereira, A. McCluskey, and G. A. Lawrance, “Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores,” Hydrometallurgy, vol. 88, no. 1–4, pp. 109–120, 2007.
[8]
M. J. Earle and K. R. Seddon, “Ionic liquids. Green solvents for the future,” Pure and Applied Chemistry, vol. 72, no. 7, pp. 1391–1398, 2000.
[9]
A. Heintz, “Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review,” Journal of Chemical Thermodynamics, vol. 37, no. 6, pp. 525–535, 2005.
[10]
S. P. Verevkin, J. Safarov, E. Bich, E. Hassel, and A. Heintz, “Thermodynamic properties of mixtures containing ionic liquids: vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide,” Fluid Phase Equilibria, vol. 236, no. 1-2, pp. 222–228, 2005.
[11]
T. V. Vasiltsova, S. P. Verevkin, E. Bich, A. Heintz, R. Bogel-Lukasik, and U. Domariska, “Thermodynamic properties of mixtures containing ionic liquids. 7. Activity coefficients of aliphatic and aromatic esters and benzylamine in 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl) imide using the transpiration method,” Journal of Chemical and Engineering Data, vol. 51, no. 1, pp. 213–218, 2006.
[12]
I. A. Sumartschenkowa, S. P. Verevkin, T. V. Vasiltsova et al., “Experimental study of thermodynamic properties of mixtures containing ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate using gas-liquid chromatography and transpiration method,” Journal of Chemical and Engineering Data, vol. 51, no. 6, pp. 2138–2144, 2006.
[13]
K. S. Kim, S. Y. Park, S. Choi, and H. Lee, “Vapor pressures of the 1-butyl-3-methylimidazolium bromide + water, 1-butyl-3-methylimidazolium tetrafluoroborate + water, and 1-(2-hydroxyethyl)-3- methylimidazolium tetrafluoroborate + water systems,” Journal of Chemical and Engineering Data, vol. 49, no. 6, pp. 1550–1553, 2004.
[14]
X. C. Jiang, J. F. Wang, C. X. Li, L. M. Wang, and Z. H. Wang, “Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate,” Journal of Chemical Thermodynamics, vol. 39, no. 6, pp. 841–846, 2007.
[15]
A. B. Pereiro, J. L. Legido, and A. Rodríguez, “Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence,” Journal of Chemical Thermodynamics, vol. 39, no. 8, pp. 1168–1175, 2007.
[16]
L. E. Ficke, R. R. Novak, and J. F. Brennecke, “Thermodynamic and thermophysical properties of ionic liquid + water systems,” Journal of Chemical and Engineering Data, vol. 55, no. 11, pp. 4946–4950, 2010.
[17]
S. Dai, Y. H. Ju, and C. E. Barnes, “Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids,” Journal of the Chemical Society, no. 8, pp. 1201–1202, 1999.
[18]
J. ?uczak, M. Joskowska, and J. Hupka, “Imidazolium ionic liquids in mineral processing,” Physicochemical Problems of Mineral Processing, vol. 42, pp. 223–236, 2008.
[19]
A. E. Visser, R. P. Swatloski, W. M. Reichert, S. T. Griffin, and R. D. Rogers, “Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids,” Industrial and Engineering Chemistry Research, vol. 39, no. 10, pp. 3596–3604, 2000.
[20]
A. Rout, K. A. Venkatesan, T. G. Srinivasan, and P. R. V. Rao, “Extraction of americium(III) from nitric acid medium by CMPO-TBP extractants in ionic liquid diluent,” Radiochimica Acta, vol. 97, no. 12, pp. 719–725, 2009.
[21]
A. Rout, K. A. Venkatesan, T. G. Srinivasan, and P. R. V. Rao, “Extraction and third phase formation behavior of Eu(III) in CMPO-TBP extractants present in room temperature ionic liquid,” Separation and Purification Technology, vol. 76, no. 3, pp. 238–243, 2011.
[22]
K. Binnemans, “Lanthanides and actinides in ionic liquids,” Chemical Reviews, vol. 107, no. 6, pp. 2592–2614, 2007.
[23]
ASTM, “Specification for reagent water,” ASTM Standard D-1193, 2006.
[24]
ASTM, “Standard test method for density and relative density of liquids by digital density meter,” ASTM Standard D-4052, 2002.
[25]
D. O. Masson, “Solute molecular volumes in relation to the solvation and ionization,” Philosophical Magazine, vol. 8, pp. 218–223, 1929.