Chlorobenzene was reacted with NO2, in the initially acid-free zeolite NaZSM-5, to yield para-chloronitrobenzene exclusively. The precursors were loaded sequentially into self-supporting pellets of the zeolite, contained within a stainless steel cell, from the gas phase. The reaction proceeds spontaneously at room temperature. It is, however, very temperature dependent and effectively ceases at zero degrees Celsius. The reaction was monitored in situ using FT-IR. The active nitrating agent is formed from the partial electron donation by the NO2 to the Na+ cations present in the zeolite lattice. Under the reaction conditions, chlorobenzene is not readily mobile through the pore system; thus, only the molecules adsorbed near a cation site react to form para-chloronitrobenzene. 1. Introduction As part of a continuing investigation into employing heterogeneous catalysis to selectively produce small industrial intermediates, para-chloronitrobenzene was synthesized from chlorobenzene and in the initially acid-free zeolite NaZSM-5. Para-chloronitrobenzene is an intermediate in the production of fine chemicals, principally dyes, pesticides, and herbicides [1–3], where it is hydrogenated to para-chloroanaline before further processing. Chloronitrobenzenes are, however, highly toxic, causing methemoglobinemia [4, 5]. Given this toxicity, and their value as intermediates, the chloronitrobenzenes would seem to be ideal candidates for a study into selective synthesis in order to diminish byproducts. ZSM-5 is a medium-pore pentasil zeolite [6, 7] with two perpendicular channel systems. One channel is straight with an elliptical cross-section of 0.55 × 0.51?nm, while the second forms a zigzag with dimensions of 0.56 × 0.53?nm [8]. Industrially, ZSM-5’s most important process is to enhance the fraction of paraxylene during xylene isomerization [9–11]. This is thought to result from the aluminosilicate channel wall restricting the available transition state volume and enhancing the diffusion of the para isomer down the pores [12]. The void space of the channel system is nearly perfectly sized to easily accommodate the adsorption and diffusion of para-substituted benzene rings, but is too restricted to allow easy movement of ortho- and metasubstituted species. ZSM-5 would thus be ideal for the selective formation of para-chloronitrobenzene. Economic considerations for industrial intermediates favor selection of the least expensive form, hence for nitrations. Traditional methods for the nitration of aromatic rings using involve strong acids to generate , which is the
References
[1]
Y. Z. Chen and Y. C. Chen, “Hydrogenation of Para-chloronitrobenzene over nickel borides,” Applied Catalysis A, vol. 115, no. 1, pp. 45–57, 1994.
[2]
B. Coq, A. Tizani, and F. Figueras, “Particle size effect on the kinetics of p-chloronitrobenzene hydrogenation over platinum/alumina catalysts,” Journal of Molecular Catalysis, vol. 68, pp. 331–345, 1991.
[3]
H. H. Szmat, Organic Building Blocks of the Chemical Industry, John Wiley & Sons, New York, NY, USA, 1989.
[4]
T. Yoshida, “Determination of p-chloronitrobenzene in plasma by reversed-phase high-performance liquid chromatography,” Journal of Chromatography B, vol. 570, pp. 321–318, 1991.
[5]
G. S. Travlos, J. Mahler, H. A. Ragan, B. J. Chou, and J. R. Bucher, “Thirteen-week inhalation toxicity of 2- and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice,” Fundamental and Applied Toxicology, vol. 30, no. 1, pp. 75–92, 1996.
[6]
R. J. Argauer and G. R. Landolt, “Crystalline zeolite zsm-s and method,” U.S. Patent 3702886, 1972.
[7]
F. G. Dwyer and E. E. Jenkins, “Crystalline silicates and method of preparing the same,” U.S. Patent 3941871, 1976.
[8]
D. H. Olson, G. T. Kokotailo, S. L. Lawton, and W. M. Meier, “Crystal structure and structure-related properties of ZSM-5,” Journal of Physical Chemistry, vol. 85, no. 15, pp. 2238–2243, 1981.
[9]
R. W. Neuzil, “Aromatic hydrocarbon separation by adsorption,” U.S. Patent 3558730, 1973.
[10]
R. W. Neuzil, “Aromatic hydrocarbon separation by adsorption,” U.S. Patent 3558732, 1973.
[11]
J. J. Ward, “Molecular sieve catalysis,” in Applied Industrial Catalysis, B. B. Leach, Ed., vol. 3, p. 271, Academic Press, New York, NY, USA, 1984.
[12]
J. K?rger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, John Wiley & Sons, New York, ,NY, USA, 1992.
[13]
J. March, Advanced Organic Chemistry, John Wiley & Sons, New York, NY, USA, 3rd edition, 1985.
[14]
S. Takenaka, T. Nishida T, and J. Kanemoto, “Process for preparing mononitrochlorobenzene,” U.S. Patent 4476335, 1984.
[15]
I. Schumaker and K. B. Wang, “Vapor phase nitration of aromatic compounds,” U. S. Patent 4415744, 1983.
[16]
I. Schumaker, “Vapor phase nitration of aromatic compounds,” U. S. Patent 4618733, 1986.
[17]
N. V. Testova, L. V. Malysheva, K. G. Ione, E. A. Paukshtis, and N. F. Salakutdinov, “Gas phase nitration of aromatic hydrocarbons on zeolite catalysts. The role of acid sites and peculiarities of the reaction course,” in Proceedings of the International Meeting "Zeolite Catalysis for the Solution of Environmental Problems", pp. 137–154, Yaroslavl, Russia, 1992.
[18]
N. F. Salkhutdinov, K. G. Ione, E. A. Kobzar, and L. V. Malysheva, “Gas-phase nitration of aromatic-compounds through nitrogen-dioxide onzeolites,” Zhurnal Organicheskoi Khimii, vol. 29, pp. 546–558, 1993.
[19]
L. V. Malysheva, E. A. Paukshtis, and K. G. Ione, “Nitration of aromatics by nitrogen oxides on zeolite catalysts: comparison of reaction in the gas phase and solutions,” Catalysis Reviews, vol. 37, pp. 179–226, 1995.
[20]
S. J. Kirkby and H. Frei, “Highly selective photochemical and thermal chlorination of benzene by Cl2 in NaZSM-5,” Journal of Physical Chemistry B, vol. 102, no. 37, pp. 7106–7111, 1998.
[21]
S. J. Kirkby, “Acid free nitration of benzene and toluene in zeolite NaZSM-5,” ISRN Physical Chemistry. In press.
[22]
H. P. Wang, T. Yu, B. A. Garland, and E. M. Eyring, “Benzene in Zeolite ZSM-5 studied by diffuse reflectance infrared spectroscopy,” Applied Spectroscopy, vol. 44, no. 6, pp. 1070–1073, 1990.
[23]
D. H. Whiffen, “Infra-red summation bands of the out-of-plane C-H bending vibrations of substituted benzene compounds,” Spectrochimica Acta, vol. 7, pp. 253–263, 1955.
[24]
R. V. St. Louis and B. Crawford Jr., “Infrared spectrum of matrix-isolated NO2,” Journal of Chemical Physics, vol. 42, pp. 857–864, 1965.
[25]
M. Katoh, T. Yamazaki, H. Kamijo, and S. Ozawa, “Infrared studies on nitrogen oxides adsorbed on alkali metal ion-exchanged ZSM-5 zeolites,” Zeolites, vol. 15, no. 7, pp. 591–596, 1995.
[26]
J. W. Nebgen, A. D. McElroy, and H. F. Klodowski, “Raman and infrared spectra of nitronium perchlorate,” Inorganic Chemistry, vol. 4, no. 12, pp. 1796–1799, 1965.
[27]
D. E. Milligan and M. E. Jacox, “Matrix-Isolation Study of the Interaction of Electrons and Alkali Metal Atoms with Various Nitrogen Oxides. Infrared Spectra of the Species NO-, , and ,” Journal of Chemical Physics, vol. 55, pp. 3404–3418, 1971.
[28]
J. H. S. Green and D. J. Harrison, “Vibrational spectra of benzene derivatives-X: monosubstituted nitrobenzenes,” Spectrochimica Acta A, vol. 26, pp. 1925–1937, 1970.