全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Waste Cooking Oil Biodiesel Use in Two Off-Road Diesel Engines

DOI: 10.5402/2012/130782

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examines the composition and combustion performance of biodiesel produced from waste cooking oil. Six fuel batches produced from waste oil used in dining-hall fryers were examined to determine their physical and chemical properties, including their elemental and fatty acid methyl ester composition. Oleic and linoleic methyl esters accounted for more than 70% of the fuel composition, while the oxygen content averaged 10.2% by weight. Exhaust emissions were monitored for 5–100% biodiesel blends using two off-road engines: a 2007 Yanmar diesel generator and a 1993 John Deere front mower. Increasing biodiesel content resulted in reduced emissions of partial combustion products from the diesel generator but a rise in NOx, with the greatest changes occurring between 5 and 20% biodiesel content. For the riding mower, biodiesel content up to 50% had little effect on emissions, while NOx and total hydrocarbon emissions decreased with 100% biodiesel. The difference in NOx emissions is attributed to the two different fuel injection control designs used in the two engines. These results indicate that the effects of biodiesel use on nonroad engine exhaust emissions may be substantially lower in older engines optimized for performance over emissions control. 1. Introduction Rising fuel costs and energy demands, combined with growing concern over greenhouse gas emissions, have led to increased interest in the use of renewable fuels to help meet increasing worldwide fuel demand and reduce atmospheric CO2 emissions from transportation sources [1–3]. Biodiesel is an oxygenated diesel fuel composed primarily of fatty acid methyl esters that can be produced from a variety of vegetable oils and animal fats [4]. It can be used directly in existing diesel engines, either as a fuel replacement or as an additive to improve combustion processes [5]. In addition, biodiesel fuels may help to reduce emissions of some toxic air pollutants [6, 7]. Biodiesel can be produced from a range of vegetable oils and animal fats. The use of soybean oil and other high-quality food-grade vegetable oils presents economic difficulties because of competition with use for food products. One more economically feasible source for biodiesel is waste cooking or frying oils, also known as yellow grease. As a waste product, used cooking oil is a potentially cheaper feedstock than edible vegetable oils [8], and does not directly compete with the growth of food crops. Estimates for potential biodiesel production from waste cooking oil in the United States range from 100 to 200 million gallons per

References

[1]  A. Murugesan, C. Umarani, R. Subramanian, and N. Nedunchezhian, “Bio-diesel as an alternative fuel for diesel engines—a review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 3, pp. 653–662, 2009.
[2]  A. C. Pinto, L. L. N. Guarieiro, M. J. C. Rezende et al., “Biodiesel: an overview,” Journal of the Brazilian Chemical Society, vol. 16, no. 6B, pp. 1313–1330, 2005.
[3]  A. K. Agarwal, “Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines,” Progress in Energy and Combustion Science, vol. 33, no. 3, pp. 233–271, 2007.
[4]  G. Knothe, J. Van Garpen, and J. Krahl, The Biodiesel Handbook, AOCS Press, Champaign, , Ill, USA, 2005.
[5]  N. M. Ribeiro, A. C. Pinto, C. M. Quintella et al., “The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review,” Energy and Fuels, vol. 21, no. 4, pp. 2433–2445, 2007.
[6]  M. Lapuerta, O. Armas, and J. Rodríguez-Fernández, “Effect of biodiesel fuels on diesel engine emissions,” Progress in Energy and Combustion Science, vol. 34, no. 2, pp. 198–223, 2008.
[7]  United States Environmental Protection Agency, “A comprehensive analysis of biodiesel impacts on exhaust emissions,” Tech. Rep. EPA 420-P-02-001, Assessment and Standard Division, Office of Transportation and Air Quality, USEPA, Washington, DC, USA, 2002.
[8]  Y. Zhang, M. A. Dubé, D. D. McLean, and M. Kates, “Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis,” Bioresource Technology, vol. 90, no. 3, pp. 229–240, 2003.
[9]  A. Radich, “Biodiesel performance, costs and uses, EIA Analysis Report, Energy Information Agency,” US Department of Energy, http://www.eia.doe.gov/oiaf/analysispaper/biodiesel/, 2004.
[10]  V. E. Eidman, “Renewable liquid fuels: current situation and prospects,” Choices, vol. 21, no. 1, pp. 15–19, 2006.
[11]  A. Demirbas, “Relationships derived from physical properties of vegetable oil and biodiesel fuels,” Fuel, vol. 87, no. 8-9, pp. 1743–1748, 2008.
[12]  M. Cetinkaya and F. Karaosmano?lu, “A new application area for used cooking oil originated biodiesel: generators,” Energy and Fuels, vol. 19, no. 2, pp. 645–652, 2005.
[13]  M. S. Graboski and R. L. McCormick, “Combustion of fat and vegetable oil derived fuels in diesel engines,” Progress in Energy and Combustion Science, vol. 24, no. 2, pp. 125–164, 1998.
[14]  T. Issariyakul, M. G. Kulkarni, A. K. Dalai, and N. N. Bakhshi, “Production of biodiesel from waste fryer grease using mixed methanol/ethanol system,” Fuel Processing Technology, vol. 88, no. 5, pp. 429–436, 2007.
[15]  M. Mittelbach and S. Gangl, “Long storage stability of biodiesel made from rapeseed and used frying oil,” Journal of the American Oil Chemists' Society, vol. 78, no. 6, pp. 573–577, 2001.
[16]  G. Knothe and K. R. Steidley, “A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel,” Bioresource Technology, vol. 100, no. 23, pp. 5796–5801, 2009.
[17]  Z. Utlu and M. S. Ko?ak, “The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions,” Renewable Energy, vol. 33, no. 8, pp. 1936–1941, 2008.
[18]  M. E. Gonzalez Gomez, R. Howard-Hildige, J. J. Leahy, T. O'Reilly, B. Supple, and M. Malone, “Emission and performance characteristics of a 2 litre Toyota diesel van operating on esterified waste cooking oil and mineral diesel fuel,” Environmental Monitoring and Assessment, vol. 65, no. 1-2, pp. 13–20, 2000.
[19]  M. S. Ko?ak, E. Ileri, and Z. Utlu, “Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils,” Energy and Fuels, vol. 21, no. 6, pp. 3622–3626, 2007.
[20]  M. P. Dorado, E. Ballesteros, J. M. Arnal, J. Gómez, and F. J. López, “Exhaust emissions from a diesel engine fueled with transesterified waste olive oil,” Fuel, vol. 82, no. 11, pp. 1311–1315, 2003.
[21]  Y. Di, C. S. Cheung, and Z. Huang, “Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil,” Science of the Total Environment, vol. 407, no. 2, pp. 835–846, 2009.
[22]  Y. F. Lin, Y. P. G. Wu, and C. T. Chang, “Combustion characteristics of waste-oil produced biodiesel/diesel fuel blends,” Fuel, vol. 86, no. 12-13, pp. 1772–1780, 2007.
[23]  D. Y. C. Leung, “Development of a clean biodiesel fuel in Hong Kong using recycled oil,” Water, Air, and Soil Pollution, vol. 130, no. 1–4, pp. 277–282, 2001.
[24]  C. S. Lee, S. W. Park, and S. I. Kwon, “An experimental study on the atomization and combustion characteristics of biodiesel-blended fuels,” Energy and Fuels, vol. 19, no. 5, pp. 2201–2208, 2005.
[25]  R. L. McCormick, M. S. Graboski, T. L. Alleman, A. M. Herring, and K. S. Tyson, “Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine,” Environmental Science and Technology, vol. 35, no. 9, pp. 1742–1747, 2001.
[26]  P. Benjumea, J. R. Agudelo, and A. F. Agudelo, “Effect of the degree of unsaturation of biodiesel fuels on engine performance, combustion characteristics, and emissions,” Energy and Fuels, vol. 25, no. 1, pp. 77–85, 2011.
[27]  C. J. Mueller, A. L. Boehman, and G. C. Martin, “An experimental investigation of the origin of increased NOx emissions when fueling a heavy-duty compression-ignition engine with soy biodiesel,” SAE International Journal of Fuels and Lubricants, vol. 2, no. 1, pp. 789–816, 2009.
[28]  E. Cecrle, C. Depcik, A. Duncan et al., “Investigation of the effects of biodiesel feedstock on the performance and emissions of a single-cylinder diesel engine,” Energy & Fuels, vol. 26, no. 4, pp. 2331–2341, 2012.
[29]  United States Environmental Protection Agency, “Control of Emissions of Air Pollution from Nonroad Diesel Engines: Final Rule,” 40 CFR Parts 9, 86 and 89. Environmental Protection Agency, Federal Register, 1996.
[30]  N. Pekula, B. Kuritz, J. Hearne, A. J. Marchese, and R. P. Hesketh, “The effect of ambient temperature, humidity, and engine speed on idling emissions from heavy-duty diesel trucks,” SAE Paper 2003-01-0290, 2003.
[31]  L. A. Graham, N. Muegge, J. Rostkowski, D. Ayyad, and D. Karman, “Development of real world representative test cycles and measured emission rates for selected off-road spark ignited engines,” SAE Paper 2006-32-0093, 2006.
[32]  D. K. Carder, M. Gautam, G. J. Thompson, and R. A. Barnett, “Determination of in-use brake-specific emission from off-road equipment powered by mechanically controlled diesel engines,” SAE Paper 2002-01-1756, 2002.
[33]  SEMTECH-DS User Manual, Revision 1. 11, Sensors, Saline, Mich, USA, 2006.
[34]  A. Demirba?, “Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey,” Energy Conversion and Management, vol. 44, no. 13, pp. 2093–2109, 2003.
[35]  A. L. Boehman, D. Morris, J. Szybist, and E. Esen, “The impact of the bulk modulus of diesel fuels on fuel injection timing,” Energy and Fuels, vol. 18, no. 6, pp. 1877–1882, 2004.
[36]  R. L. McCormick, A. Williams, J. Ireland, M. Brimhall, and R. R. Hayes, “Effects of biodiesel blends on vehicle emissions,” Tech. Rep. NREL/MP-540-40544, National Renewable Energy Laboratory, Golden, Colo, USA, 2006.
[37]  G. A. Ban-Weiss, J. Y. Chen, B. A. Buchholz, and R. W. Dibble, “A numerical investigation into the anomalous slight NOx increase when burning biodiesel; a new (old) theory,” Fuel Processing Technology, vol. 88, no. 7, pp. 659–667, 2007.
[38]  W. J. Brown, S. A. Gendernalik, R. V. Kerley, and F. J. Marsee, “Effects of engine intake-air moisture on exhaust emissions,” SAE Paper 700107, 1970.
[39]  M. J. Manos, J. W. Bozek, and T. A. Huls, “Effect of laboratory ambient conditions on exhaust emissions,” SAE Paper 720124, 1972.
[40]  S. R. Krause, “Effect of engine intake-air humidity, temperature, and presure on exhaust emissions,” SAE Paper 710835, 1971.
[41]  L. G. Dodge, T. J. Callahan, and T. W. Ryan, “Humidity and temperature correction factors for NOx emissions from diesel engines: final report,” SwRI Project 03. 30. 10. 06599, Southwest Research Institute, San Antonio, Tex, USA, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133