Until recently, the standard method for RNA interference (RNAi)-based reverse genetics in plant parasitic nematodes (PPNs) was based on the use of long double-stranded RNA (dsRNA). This increased the chance of off-target gene silencing through interactions between different short interfering RNAs (siRNAs) and non-cognate mRNA targets. In this work, we applied gene-specific knockdown of Mg-pat-10 and Mg-unc-87 of the root knot nematode Meloidogyne graminicola, using discrete 21 bp siRNAs. The homologue of Mg-pat-10 in C. elegans encodes body wall troponin C, which is essential for muscle contraction, whereas the homologue of Mg-unc-87 encodes two proteins involved in maintenance of the structure of myofilaments in the body wall muscle of C. elegans. The knockdown at the transcript level, as seen by semi-quantitative RT-PCR analysis, indicates that the Mg-pat-10 gene was silenced after soaking the nematodes in a specific siRNA for 48 h. At 72 h post-soaking, the Mg-pat-10 mRNA level was similar to the control, indicating the recovery of expression between 48 h and 72 h post-soaking. For Mg-unc-87 the nematodes started to recover from siRNA silencing 24 h after thorough washing. A migration assay showed that for the nematodes that were soaked in the control (siRNA of β-1,4-endoglucanase), 77% of the nematodes completed migration through the column in a 12 h period. By comparison with the control, nematodes incubated in the siRNA of pat-10 or unc-87 were significantly inhibited in their motility. After 12 h, only 6.3% of the juveniles incubated in the Mg-pat-10 siRNA and 9.3% of those incubated in Mg-unc-87 siRNA had migrated through the column, representing 91.8% and 87.9% inhibition respectively compared to the control. In the present work, we demonstrated that M. graminicola is readily susceptible to siRNAs of two genes involved in nematode motility. This is an important contribution to the progressive use of siRNA for functional analysis. Moreover, the application of RNAi in PPNs opens the way for environmentally friendly control of M. graminicola.
References
[1]
Nicol, J.M.; Turner, S.J.; Coyne, D.L.; den Nijs, L.; Hockland, S.; Maafi, Z.T. Current nematode treaths to world agriculture. Genomics Mol. Genet. Plant Nematode Interact 2011, doi:10.1007/978-94-007-0434-3_2.
[2]
Jaiswal, R.K.; Kumar, D.; Singh, K.P. Relationship between growth of rice seedlings and time of infection with Meloidogynegraminicola. Libyan Agric. Res. Center J. Int. 2012, 3, 13–17.
[3]
Ahmed, R.; Gowen, S. Studies on the infection of Meloidogyne spp. with isolates of Pasteuria penetrans. Nematol. Mediterr. 1991, 19, 229–233.
[4]
Arguel, M.J.; Jaouannet, M.; Magliano, M.; Abad, P.; Rosso, M.N. siRNAs trigger efficient silencing of a parasitism gene in plant parasitic root-knot nematodes. Genes 2012, 3, 391–408, doi:10.3390/genes3030391.
[5]
Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498, doi:10.1038/35078107.
[6]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811, doi:10.1038/35888.
[7]
Rosso, M.N.; Jones, J.T.; Abad, P. RNAi and functional genomics in plant parasitic nematodes. Annu. Rev. Phytopathol. 2009, 47, 207–232, doi:10.1146/annurev.phyto.112408.132605.
[8]
Kimber, J.K.; McKinney, S.; McMaster, S.; Day, A.T.; Fleming, C.C.; Maule, G.A. Flp gene disruption in parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J. 2007, 21, 1233–1243, doi:10.1096/fj.06-7343com.
[9]
Meissner, B.; Warner, A.; Wong, K.; Dube, N.; Lorch, A.; McKay, S.J.; Khattra, J.; Rogalski, T.; Somasiri, A.; Chaudhry, I.; et al. An integrated strategy to study muscle development and myofilament structure in Caenorhabditis elegans. PLoS Genet. 2009, 5, e1000537, doi:10.1371/journal.pgen.1000537.
[10]
Kranewitter, W.J.; Ylann, E.J.; Gimona, M. UNC-87 is an actin-bundling protein. J. Biol. Chem. 2001, 276, 6306–6312, doi:10.1074/jbc.M009561200.
[11]
Yamashiro, S.; Gimona, M.; Ono, S. UNC-87, a calponin-related protein in C. elegans, antagonizes ADF/cofilin-mediated actin filament dynamics. J. CellSci. 2007, 120, 3022–3033, doi:10.1242/jcs.013516.
[12]
Simmer, F.; Moorman, C.; van der Linden, A.M.; Kuijk, E.; van den Berghe, P.V.E.; Kamath, R.S.; Fraser, A.G.; Ahringer, J.; Plasterk, R.H.A. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003, 1, e12.
[13]
Haegeman, A.; Bauters, L.; Kyndt, T.; Rahman, M.; Gheysen, G. Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. Mol. Plant Pathol. 2013, 14, 379–390, doi:10.1111/mpp.12014.
[14]
Translate a DNA Sequence. Available online: http://www.vivo.colostate.edu/molkit/translate/ (accessed on 10 July 2010).
[15]
Life Technologies Website. Available online: http://www.ambion.com/techlib/misc/siRNA_tools.html (accessed on 21 May 2010).
[16]
Biolegio Home Page. Available online: www.biolegio.com (accessed on 2 June 2010).
[17]
De Ahmed, F.; Raghava, G.P.S. Designing of highly effective complementary and mismatch siRNAs for silencing a gene. PLoS One 2011, 6, e23443.
[18]
Hooper, D.J.; Hallmann, J.; Subbotin, S. Methods for Extraction, Processing and Detection of Plant and Soil Nematodes. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture; Luc, M., Sikora, R.A., Bridge, J., Eds.; CABI: Wallingford, UK, 2005; pp. 53–86.
[19]
WormBase Website. Available online: www.wormbase.org/db/searches/blast-blast (accessed on 24 March 2010).
[20]
Dalzell, J.J.; McMaster, S.; Fleming, C.C.; Maule, G.A. Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. Int. J. Parasitol. 2010, 40, 91–100, doi:10.1016/j.ijpara.2009.07.003.
[21]
Rosso, M.N.; Favery, B.; Piotte, C.; Arthaud, L.; de Boer, J.M.; Hussey, R.S.; Bakker, J.; Baum, T.J.; Abad, P. Isolation of a cDNA encoding a β-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. MPMI 1999, 12, 585–591, doi:10.1094/MPMI.1999.12.7.585.
[22]
Williams, B.D.; Waterston, R.H. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J. Cell Biol. 1994, 124, 475–490, doi:10.1083/jcb.124.4.475.
[23]
Terami, H.; Williams, B.D.; Kitamura, S.; Sakube, Y.; Matsumoto, S.; Doi, S.; Obinata, T.; Kagawa, H. Genomic organization, expression, and analysis of the troponin C gene pat-10 of Caenorhabditis elegans. J. Cell Biol. 1999, 146, 193–202.
[24]
Goetinck, S.; Waterston, R.H. The Caenorhabditis elegans UNC-87 protein is essential for maintenance, but not assembly, of body wall muscle. J. Cell Biol. 1994, 127, 71–78, doi:10.1083/jcb.127.1.71.
[25]
Joseph, S.; Gheysen, G.; Subramaniam, K. RNA interference in Pratylenchus coffeae: Knock down of Pc-pat-10 and Pc-unc-87 impedes migration. Mol. Biochem. Parasitol. 2012, 186, 51–59, doi:10.1016/j.molbiopara.2012.09.009.
[26]
Tan, J.C.H.; Jones, M.G.K.; Fuso-Nyarko, J. Gene silencing in root lesion nematodes (Pratylenchus. spp.) significantly reduces reproduction in a plant host. Exp. Parasitol. 2013, 133, 166–178, doi:10.1016/j.exppara.2012.11.011.
[27]
Rosso, M.N.; Dubrana, M.P.; Cimbolini, N.; Jaubert, S.; Abad, P. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol. PlantMicrobe Interact. 2005, 18, 615–620, doi:10.1094/MPMI-18-0615.
[28]
Dalzell, J.J.; Warnock, N.D.; Stevenson, M.A.; Mousley, A.; Fleming, C.C.; Maule, G.A. Short interfering RNA-mediated knockdown of drosha and pasha in undifferentiated Meloidogyne incognita eggs leads to irregular growth and embryonic lethality. Inter. J. Parasitol. 2010, 40, 1303–1310, doi:10.1016/j.ijpara.2010.03.010.