By the 1970s, government-supported eradication campaigns reduced red wolves to a remnant population of less than 100 individuals on the southern border of Texas and Louisiana. Restoration efforts in the region were deemed unpromising because of predator-control programs and hybridization with coyotes. The U.S. Fish and Wildlife Service (USFWS) removed the last remaining red wolves from the wild and placed them in a captive-breeding program. In 1980, the USFWS declared red wolves extinct in the wild. During 1987, the USFWS, through the Red Wolf Recovery Program, reintroduced red wolves into northeastern North Carolina. Although restoration efforts have established a population of approximately 70–80 red wolves in the wild, issues of hybridization with coyotes, inbreeding, and human-caused mortality continue to hamper red wolf recovery. We explore these three challenges and, within each challenge, we illustrate how research can be used to resolve problems associated with red wolf-coyote interactions, effects of inbreeding, and demographic responses to human-caused mortality. We hope this illustrates the utility of research to advance restoration of red wolves.
References
[1]
Nowak, R.M. The original status of wolves in eastern North America. Southeast. Nat. 2002, 1, 95–130, doi:10.1656/1528-7092(2002)001[0095:TOSOWI]2.0.CO;2.
[2]
Nowak, R.M. Wolf evolution and taxonomy. In Wolves: Behavior, Ecology, and Conservation; Mech, L.D., Boitani, L., Eds.; University of Chicago Press: Chicago, IL, USA, 2003; pp. 239–271.
[3]
McCarley, H. The mammals of eastern Texas. J. Sci. 1959, 11, 385–426.
[4]
McCarley, H. The taxonomic status of wild Canis (Canidae) in the south central United States. Southwest. Nat. 1962, 7, 227–235.
Carley, C.J. Activities and Findings of the Red Wolf Recovery Program from Late 1973 to July 1, 1975; U.S. Fish and Wildlife Service: Albuquerque, NM, USA, 1975; p. 215.
[7]
Red Wolf Recovery/Species Survival Plan; U.S. Fish and Wildlife Service: Atlanta, GA, USA, 1989; p. 110.
[8]
Carely, C.J. The Red Wolf (Canis rufus) Recovery Program: Things they didn’t tell me in school. In Reflections of a Naturalist: Papers Honoring Professor Eugene D. Fleharty; Choate, J.R., Ed.; Fort Hays State University: Hays, KS, USA, 2000; pp. 125–141.
[9]
Phillips, M.K.; Henry, V.G.; Kelly, B.T. Restoration of the red wolf. In Wolves: Behavior, Ecology, and Conservation; Mech, L.D., Boitani, L., Eds.; University of Chicago Press: Chicago, IL, USA, 2003; pp. 272–288.
[10]
A Proposal to Reintroduce the Red Wolf into the Great Smoky Mountains National Park; Red Wolf Management Series Technical Report No. 7; U.S. Fish and Wildlife Service: Atlanta, GA, USA, 1990; p. 33.
[11]
Lucash, C.F.; Crawford, B.; Clark, J.D. Species repatriation: Red wolf. In Ecosystem Management for Sustainability; Piene, J.D., Ed.; Lewis Publishing: Boca Raton, FL, USA, 1998; pp. 225–246.
[12]
Henry, V.G. Notice of termination of the red wolf reintroduction project in the Great Smoky Mountains National Park. Federal Register 1998, 63, 54152–54153.
[13]
U.S. Fish and Wildlife Service: Atlanta, GA, USA, 2013; p. 9.
[14]
Phillips, M.K.; Henry, V.G. Comments on red wolf taxonomy. Conserv. Biol. 1992, 6, 596–599.
[15]
Nowak, R.M.; Federoff, N.E. Validity of the red wolf: Response to Roy et al.. Conserv. Biol. 1998, 12, 722–725, doi:10.1046/j.1523-1739.1998.97287.x.
[16]
Population and Habitat Viability Assessment Workshop for the Red Wolf (Canis rufus); Kelly, B.T., Miller, P.S., Seal, U.S., Eds.; Conservation Breeding Specialist Group (SSC/IUCN): Apple Valley, MN, USA, 1999; p. 88.
[17]
Stoskopf, M.K.; Beck, K.; Fazio, B.B.; Fuller, T.K.; Gese, E.M.; Kelly, B.T.; Knowlton, F.F.; Murray, D.L.; Waddell, W.T.; Waits, L.P. Implementing recovery of the red wolf: Integrating research, scientists, and managers. Wildl. Soc. Bullet. 2005, 33, 1145–1152, doi:10.2193/0091-7648(2005)33[1145:FTFIRO]2.0.CO;2.
[18]
Red Wolf (Canis rufus) 5-Year Review: Summary and Evaluation; U.S. Fish and Wildlife Service: Atlanta, GA, USA, 2007; p. 58.
[19]
Rabon, D.R.; Waddell, W. Effects of inbreeding on reproductive success, performance, litter size, and survival in captive red wolves (Canis rufus). Zoo Biol. 2010, 29, 36–49.
[20]
Chambers, S.M.; Fain, S.R.; Fazio, B.; Amaral, M. An account of the taxonomy of North American wolves from morphological and genetic analyses. North Am. Fauna 2012, 77, 1–67, doi:10.3996/nafa.77.0001.
[21]
Nowak, R.M. North American quaternary Canis. Monogr. Mus. Nat. Hist., Univ. Kans. 1979, 6, 1–154.
[22]
Wayne, R.K.; Jenks, S.M. Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf Canis rufus. Nature 1991, 351, 565–568, doi:10.1038/351565a0.
[23]
Wilson, P.J.; Grewal, S.; Lawford, I.D.; Heal, J.N.M.; Granacki, A.G.; Pennock, D.; Theberge, J.B.; Theberge, M.T.; Voight, D.R.; Waddell, W.; Chambers, R.E.; Paquet, P.C.; Goulet, G.; Cluff, D.; White, B.N. DNA profiles of the eastern Canadian wolf and the red wolf provide evidence for a common evolutionary history independent of the gray wolf. Can. J. Zool. 2000, 78, 2156–2166, doi:10.1139/z00-158.
[24]
Bartram, W. Travels through North and South Carolina, Georgia, East and West Florida, the Cherokee Country, the Extensive Territories of the Muscogulges or Creek Confederacy, and the Country of the Chactaws. Containing an Account of the Soil and Natural Productions of Those Regions; Together with Observations on the Manners of the Indians; James & Johnson: Philadelphia, PA, USA, 1791.
[25]
Harper, F. The name of the Florida wolf. J. Mammal. 1942, 23, 339.
[26]
Nowak, R.M. The red wolf is not a hybrid. Conserv. Biol. 1992, 6, 593–595.
[27]
Audubon, J.J.; Bachman, J. Viviparous Quadrupeds of North America; J.J. Audubon: New York, NY, USA, 1851; Volume 2.
[28]
Bangs, O. The land mammals of peninsular Florida and the coast region of Georgia. Proc. Boston Soc. Nat. Hist. 1898, 28, 157–235.
[29]
Baily, V. Biological survey of Texas. North Am. Fauna 1905, 25, 1–255, doi:10.3996/nafa.25.0001.
[30]
Miller, G.S. The names of two North American wolves. Proc. Biol. Soc. Wash. 1912, 25, 95.
[31]
Goldman, E.A. The wolves of North America. J. Mammal. 1937, 18, 37–45, doi:10.2307/1374306.
[32]
Goldman, E.A. Classification of wolves. In The Wolves of North America; Young, S.P., Goldman, E.A., Eds.; American Wildlife Institute: Washington, DC, USA, 1944; Volume 2, pp. 389–636.
[33]
Paradiso, J.L. Recent records of red wolves from the Gulf Coast of Texas. Southwest. Nat. 1965, 10, 218–319, doi:10.2307/3669321.
[34]
Paradiso, J.L. Canids recently collected in east Texas, with comments on the taxonomy of the red wolf. Am. Midl. Nat. 1968, 80, 529–534, doi:10.2307/2423543.
[35]
Pimlott, D.H.; Joslin, P.W. The status and distribution of the red wolf. T. N. Am. Wildl. Nat. Res. 1968, 33, 373–389.
[36]
Mech, L.D. The Wolf: The Ecology and Behavior of an Endangered Species; University of Minnesota Press: Minneapolis, MN, USA, 1970.
[37]
Roy, M.S.; Geffen, E.; Ostrander, D.; Wayne, R.K. Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Mol. Biol. Evol. 1994, 11, 533–570.
[38]
Roy, M.S.; Geffen, E.; Smith, E.; Wayne, R.K. Molecular genetics of pre-1940 red wolves. Conserv. Biol. 1996, 10, 1413–1424.
[39]
Reich, D.E.; Wayne, R.K.; Goldstein, D.B. Genetic evidence for a recent origin by hybridization of red wolves. Mol. Ecol. 1999, 8, 139–144, doi:10.1046/j.1365-294X.1999.00514.x.
[40]
vonHoldt, B.M.; Pollinger, J.P.; Earl, D.A.; Knowles, J.C.; Boyko, A.R.; Parker, H.; Geffen, E.; Pilot, M.; Jedrzejewski, W.; Jedrzejewski, B.; Sidorovich, V.; Creco, C.; Ettore, R.; Musiani, M.; Kays, R.; Bustamante, C.D.; Ostrander, E.A.; Novembre, J.; Wayne, R.K. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 2011, 21, 1294–1305, doi:10.1101/gr.116301.110.
[41]
Nowak, R.M. Another look at wolf taxonomy. In Ecology and Conservation of Wolves in a Changing World: Proceedings of the Second North American Symposium on Wolves, Edmonton, Alberta, 25–27 August 1992; Carbyn, L.N., Fritts, S.H., Seip, D.R., Eds.; Canadian Circumpolar Institute, University of Alberta: Edmonton, AB, Canada, 1995; pp. 375–397.
[42]
Nowak, R.M.; Federoff, N.E. Systematics of wolves in eastern North America. In Proceedings of Defenders of Wildlife’s Wolves of America Conference, Albany, NY, USA, 14–16 November 1996; pp. 187–203.
[43]
Bertorelle, G.; Excoffier, L. Inferring admixture proportions from molecular data. Mol. Biol. Evol. 1998, 15, 1298–1311, doi:10.1093/oxfordjournals.molbev.a025858.
[44]
Hedrick, P.W.; Lee, R.N.; Garrigan, D. Major histocompatibility complex variation in red wolves: Evidence for common ancestry with coyotes and balancing selection. Mol. Ecol. 2002, 11, 1905–1913, doi:10.1046/j.1365-294X.2002.01579.x.
[45]
Adams, J.R.; Kelly, B.T.; Waits, L.P. Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyote (Canis latrans). Mol. Ecol. 2003, 12, 2175–2186, doi:10.1046/j.1365-294X.2003.01895.x.
[46]
Wilson, P.J.; Grewal, S.; McFadden, T.; Chambers, R.C.; White, B.N. DNA extracted from eastern North American wolves killed in the 1800s is not of gray wolf origin. Can. J. Zool. 2003, 81, 936–940, doi:10.1139/z03-059.
[47]
Hailer, F.; Leonard, J.A. Hybridization among three native North American Canis species in a region of natural sympatry. PLoS ONE 2008, 3, doi:10.1371/journal.pone.0003333.
[48]
Rutledge, L.Y.; Wilson, P.J.; Klütsch, F.C.; Patterson, B.R.; White, B.N. Conservation genomics in perspective: A holistic approach to understanding Canis evolution in North America. Biol. Conserv. 2012, 155, 186–192, doi:10.1016/j.biocon.2012.05.017.
Wheeldon, T.; Patterson, B.R.; White, B.N. Sympatric wolf and coyote populations of the western Great Lakes region are reproductively isolated. Mol. Ecol. 2010, 19, 4428–4440, doi:10.1111/j.1365-294X.2010.04818.x.
[51]
Rabon, D.R.; Bartel, R.; Beyer, A. Red Wolf Adaptive Management Plan FY13-FY15; U.S. Fish and Wildlife Service: Manteo, NC, USA, 2013.
[52]
Miller, C.; Adams, J.; Waits, L. Pedigree based assignment tests for reversing coyote (Canis latrans) introgression into the wild red wolf (Canis rufus) population. Mol. Ecol. 2003, 12, 3287–3301, doi:10.1046/j.1365-294X.2003.02003.x.
[53]
Adams, J.R. A multi-faceted molecular approach to red wolf (Canis rufus) conservation and management. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2006.
[54]
Red Wolf Recovery Program. U.S. Fish and Wildlife Service: Manteo, NC, USA. Unpublished data, 2013.
[55]
Fredrickson, R.J.; Hedrick, P.W. Dynamics of hybridization and introgression in red wolves and coyotes. Conserv. Biol. 2006, 20, 1272–1283, doi:10.1111/j.1523-1739.2006.00401.x.
[56]
Bohling, J.H. Exploring patterns and mechanisms of red wolf (Canis rufus) hybridization in North Carolina. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2011.
[57]
Rabon, D.R. Factors affecting reproduction in the red wolf (Canis rufus). Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2009.
[58]
Jordan, P.A.; Shelton, P.C.; Allen, D.L. Numbers, turnover, and social structure of the Isle Royale wolf population. Am. Zool. 1967, 7, 233–252.
[59]
Mech, L.D. Alpha status, dominance, and division of labor in wolf packs. Can. J. Zool. 1999, 77, 1196–1203, doi:10.1139/z99-099.
[60]
Hinton, J.W.; Chamberlain, M.J. Space and habitat use by a red wolf pack and their pups during pup-rearing. J. Wildl. Manag. 2010, 74, 55–58, doi:10.2193/2008-583.
[61]
Sparkman, A.M.; Adams, J.; Beyer, A.; Steury, T.D.; Waits, L.; Murray, D.L. Helper effects on pup lifetime fitness in the cooperatively breeding red wolf (Canis rufus). Proc. Roy. Soc. B. 2011, 278, 1381–1389, doi:10.1098/rspb.2010.1921.
[62]
Gese, E.M.; Ruff, R.L.; Crabtree, R.L. Social and nutritional factors influencing dispersal of resident coyotes. Anim. Behav. 1996, 52, 1025–1043, doi:10.1006/anbe.1996.0250.
[63]
Gese, E.M.; Ruff, R.L.; Crabtree, R.L. Foraging ecology of coyotes (Canis latrans): the influence of extrinsic factors and a dominance hierarchy. Can. J. Zool. 1996, 74, 769–783, doi:10.1139/z96-089.
[64]
Bekoff, M.; Gese, E.M. Coyote (Canis latrans). In Wild Mammals of North America, 2nd ed.; Feldhamer, G.A., Thompson, B.C., Chapman, J.A., Eds.; John Hopkins University Press: Baltimore, MD, USA, 2003; pp. 467–481.
[65]
Gittleman, J.L. Carnivore group living: Comparative trends. In Carnivore Behavior, Ecology, and Evolution; Gittleman, J.L., Ed.; Cornell University Press: Ithaca, NY, USA, 1989; Volume 1, pp. 183–207.
[66]
Geffen, E.; Gompper, M.E.; Gittleman, J.L.; Hang-Kwang, L.; Macdonald, D.W.; Wayne, R.K. Size, life-history traits and social organization in the Canidae: A reevaluation. Am. Nat. 1996, 147, 140–160.
[67]
Hinton, J.H.; Chamberlain, M.J. Morphometrical discrimination of red wolves (Canis rufus), coyotes (Canis latrans), and their hybrids in North Carolina. J. Mammal. 2013. in review.
[68]
Rosenzweig, M.L. Community structure in sympatric Carnivora. J. Mammal. 1966, 47, 602–612, doi:10.2307/1377891.
[69]
Rosenzweig, M.L. The strategy of body size in mammalian carnivores. Am. Midl. Nat. 1968, 80, 299–315, doi:10.2307/2423529.
[70]
Gittleman, J.L. Carnivore body size: Ecological and taxonomic correlates. Oecologia 1985, 67, 540–554, doi:10.1007/BF00790026.
Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–789, doi:10.1038/nrg2664.
[82]
Lande, R. Genetics and demography in biological conservation. Science 1988, 241, 1455–1460.
[83]
Allendorf, F.W.; Hohenlohe, P.A.; Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 2010, 11, 697–709, doi:10.1038/nrg2844.
[84]
Frankham, R. Where are we in conservation genetics and where do we need to go? Conserv. Genet. 2010, 11, 661–663, doi:10.1007/s10592-009-0010-2.
[85]
Waddell, W.; Long, S. Population Analysis and Breeding and Transfer Plan—Red Wolf (Canis rufus gregoryi) Species Survival Plan? Program. Association of Zoos & Aquariums. Available online: http://redwolfssp.org/web/ssp_recommendations/red_wolf_recommendations_2010.pdf (accessed on 15 June 2013).
[86]
Kalinowski, S.T.; Hedrick, P.W.; Miller, P.S. No evidence for inbreeding depression in Mexican and red wolf captive breeding programs. Conserv. Biol. 1999, 13, 1371–1377, doi:10.1046/j.1523-1739.1999.98346.x.
[87]
Hedrick, P.W.; Fredrickson, J. Captive breeding and the reintroduction of Mexican and red wolves. Mol. Ecol. 2008, 17, 344–350, doi:10.1111/j.1365-294X.2007.03400.x.
[88]
Smith, D.; Meier, T.; Geffen, E.; Mech, L.D.; Burch, J.W.; Adams, L.G.; Wayne, R.K. Is incest common in gray wolf packs? Behav. Ecol. 1997, 8, 384–391, doi:10.1093/beheco/8.4.384.
Jankovic, I.; vonHoldt, B.M.; Rosenberg, N.A. Heterozygosity of the Yellowstone wolves. Mol. Ecol. 2010, 19, 3246–3249, doi:10.1111/j.1365-294X.2010.04746.x.
[91]
Sparkman, A.M.; Adams, J.M.; Steury, T.D.; Waits, L.P.; Murray, D.L. Pack social dynamics and inbreeding avoidance in the cooperatively breeding red wolf. Behav. Ecol. 2012, 23, 1186–1194.
[92]
Beyer, A.; Lucash, C. Personal communication. U.S. Fish and Wildlife Service: Manteo, NC, USA, 2013.
[93]
Snell, G.D.; Higgins, G.F. Alleles at the histocompatibility-2 locus in the mouse as determined by tumor transplantation. Genetics 1951, 36, 306–310.
[94]
Apanius, V.; Penn, D.; Slev, P.; Ruff, L.R.; Potts, W.K. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 1997, 17, 179–224, doi:10.1615/CritRevImmunol.v17.i2.40.
[95]
Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2005, 2, 1–16, doi:10.1186/1742-9994-2-1.
[96]
Milinski, M. The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 159–186, doi:10.1146/annurev.ecolsys.37.091305.110242.
[97]
Huchard, E.; Knapp, L.A.; Wand, J.; Raymond, M.; Cowlishaw, G. MHC, mate choice and heterozygote advantage in a wild social primate. Mol. Ecol. 2010, 19, 2545–2561.
[98]
Piertney, S.B.; Oliver, M.K. The evolutionary ecology of the major histocompatibility complex. Heredity 2006, 96, 7–21.
[99]
Leslie, P.H. On the use of matrices in certain population mathematics. Biometrika 1945, 33, 183–212, doi:10.1093/biomet/33.3.183.
[100]
Ginzburg, L.R. The theory of population dynamics: I. back to first principles. J. Theor. Biol. 1986, 122, 385–399, doi:10.1016/S0022-5193(86)80180-1.
[101]
Gotelli, N.J. A Primer of Ecology, 3rd ed. ed.; Oxford University Press: New York, NY, USA, 2001.
[102]
Watts, H.E.; Holekamp, K.E. Ecological determinants of survival and reproduction in the spotted hyena. J. Mammal. 2009, 90, 461–471, doi:10.1644/08-MAMM-A-136.1.
[103]
Stahler, D.R.; MacNulty, D.R.; Wayne, R.K.; vonHoldt, B.; Smith, D.W. The adaptive value of morphological, behavioral and life-history traits in reproductive female wolves. J. Anim. Ecol. 2013, 82, 222–234, doi:10.1111/j.1365-2656.2012.02039.x.
[104]
Willams, B.K.; Nichols, J.D.; Conroy, M.J. Analysis and Management of Animal Populations; Academic Press: San Diego, CA, USA, 2002.
[105]
Norris, K. Managing threatened species: The ecological toolbox, evolutionary theory and declining-population paradigm. J. Appl. Ecol. 2004, 41, 413–426, doi:10.1111/j.0021-8901.2004.00910.x.
[106]
Ak?akaya, H.R. Population viability analyses with demographically and spatially structured models. Ecol. Bullet. 2000, 48, 23–38.
[107]
Ak?akaya, H.R. Conservation and management for multiple species: Integrating field research and modeling into management decisions. Environ. Manage. 2000, 26, S75–S83.
[108]
Packer, C.; Kosmala, M.; Cooley, H.S.; Brink, H.; Pintea, L.; Garshelis, D. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 2009, 4, doi:10.1371/journal.pone.0005941.
Burnham, K.P.; White, G.C.; Anderson, D.R. Model selection strategy in the analysis of capture-recapture data. Biometrics 1995, 51, 888–898, doi:10.2307/2532990.
[111]
Nichols, J.D.; Hines, J.E.; Pollock, K.H.; Hinz, R.L.; Link, W.A. Estimating breeding proportions and testing hypotheses about costs of reproduction with capture-recapture data. Ecology 1994, 75, 2052–2065, doi:10.2307/1941610.
[112]
Ivan, J.; White, G.C.; Shenk, T.M. Using auxiliary telemetry information to estimate animal density from capture-recapture data. Ecology 2013, 94, 809–816, doi:10.1890/12-0101.1.
[113]
Gittleman, J.L.; Pimm, S.L. Crying wolf in North America. Nature 1991, 351, 524–525, doi:10.1038/351524a0.
[114]
Wayne, R.K.; Gittleman, J.L. The problematic red wolf. Sci. Am. 1995, 273, 36–39, doi:10.1038/scientificamerican0795-36.
[115]
Murray, D.L.; Waits, L.P. Taxonomic status and conservation strategy of the endangered red wolf: A response to Kyle et al. (2006). Conserv. Genet. 2007, 8, 1483–1485, doi:10.1007/s10592-007-9307-1.
[116]
Kyle, C.J.; Johnson, A.R.; Patterson, B.R.; Wilson, P.J.; White, B.N. The conspecific nature of eastern and red wolves: conservation and management implications. Conserv. Genet. 2008, 9, 699–701, doi:10.1007/s10592-007-9380-5.
[117]
North Carolina Wildlife Resources Commission. Fox and Coyote Population Study Final Report. Available online: http://www.ncwildlife.org/Portals/0/Learning/documents/Species/Fox_CoyotePopulationsReport.pdf (accessed on 10 June 2013).
[118]
Davidson, W.R.; Appel, M.J.; Doster, G.L.; Baker, O.E.; Brown, J.F. Disease and parasites of red foxes, gray foxes, and coyotes from commercial sources selling to fox-chasing enclosures. J. Wildl. Dis. 1992, 28, 581–589.
[119]
Baker, O.E. Status of fox and coyote hunting enclosures in the southeastern United States. Proc. Annu. Conf. Southeast. Assoc. Fish. Wildl. Agenc. 1993, 52, 367–376.
[120]
Lee, G.W.; Lee, K.A.; Davidson, W.R. Evaluation of fox-chasing enclosures at sites of potential introduction and establishment of Echinococcus multilocularis. J. Wildl. Dis. 1993, 29, 498–501.
[121]
LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 1989, 20, 97–117.
[122]
Brown, J.H.; Marquet, P.A.; Taper, M.L. Evolution of body size: Consequences of an energetic definition of fitness. Am. Nat. 1993, 142, 573–584.
[123]
Capellini, I.; Venditti, C.; Barton, R.A. Phylogeny and metabolic scaling in mammals. Ecology 2010, 91, 2783–2793, doi:10.1890/09-0817.1.
[124]
Agrawal, A.A. Phenotypic plasticity in the interactions and evolution of species. Science 2001, 294, 321–326, doi:10.1126/science.1060701.
[125]
Crispo, E.; DiBattista, J.D.; Correa, C.; Thibert-Plante, X.; McKellar, A.E.; Schwartz, A.K; Berner, D.; De León, L.F.; Hendry, A.P. The evolution of phenotypic plasticity in response to anthropogenic disturbance. Evol. Ecol. Res. 2010, 12, 47–66.
[126]
Schluter, D. Ecology and the origin of species. Trends Ecol. Evol. 2001, 16, 327–380.
[127]
Price, T.D.; Qvarnstr?m, A.; Irwin, D.E. The role of phenotypic plasticity in driving genetic evolution. Proc. Roy. Soc. Lond. B. 2003, 270, 1433–1440, doi:10.1098/rspb.2003.2372.
[128]
Kingsolver, J.G.; Pfennig, D.W. Patterns and power of phenotypic selection in nature. Bioscience 2008, 57, 561–572, doi:10.1641/B570706.
[129]
Siepielski, A.M.; DiBattista, J.D.; Carlson, S.M. It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 2009, 12, 1261–1276, doi:10.1111/j.1461-0248.2009.01381.x.