全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2013 

Tracking Change: A Look at the Ecological Footprint of Antibiotics and Antimicrobial Resistance

DOI: 10.3390/antibiotics2020191

Keywords: antibiotics, environment, antimicrobial resistance, health

Full-Text   Cite this paper   Add to My Lib

Abstract:

Among the class of pollutants considered as ‘emerging contaminants’, antibiotic compounds including drugs used in medical therapy, biocides and disinfectants merit special consideration because their bioactivity in the environment is the result of their functional design. Antibiotics can alter the structure and function of microbial communities in the receiving environment and facilitate the development and spread of resistance in critical species of bacteria including pathogens. Methanogenesis, nitrogen transformation and sulphate reduction are among the key ecosystem processes performed by bacteria in nature that can also be affected by the impacts of environmental contamination by antibiotics. Together, the effects of the development of resistance in bacteria involved in maintaining overall ecosystem health and the development of resistance in human, animal and fish pathogens, make serious contributions to the risks associated with environmental pollution by antibiotics. In this brief review, we discuss the multiple impacts on human and ecosystem health of environmental contamination by antibiotic compounds.

References

[1]  Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 1929, 10, 226–236.
[2]  Nelson, M.; Dinardo, A.; Hochberg, J.; Armelagos, G. Brief communication: Mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350–550 CE. Am. J. Phys. Anthropol. 2010, 143, 151–154, doi:10.1002/ajpa.21340.
[3]  Wustenberg, P.; Henneicke-von Zepelin, H.H.; Kohler, G.; Stammwitz, U. Efficacy and mode of action of an immunomodulator herbal preparation containing Echinacea, wild indigo, and white cedar. Adv. Ther. 1999, 16, 51–70.
[4]  Oberthür, C.; Jaggi, R.; Hamburger, M. HPLC based activity profiling for 5-lipoxygenase inhibitory activity in Isatis tinctoria leaf extracts. Filoterapia 2005, 76, 324–332.
[5]  Hungria, M.; Astolfi-Filho, S.; Chueire, L.M.O.; Nicolás, M.F.; Santos, E.B.P.; Bulbol, M.R.; Souza-Filho, A.; Assun??o, E.N.; Germano, M.G.; Vasconcelos, A.T.R. Genetic characterization of Chromobacterium isolates from black water environments in the Brazilian Amazon. Lett. Appl. Microbiol. 2005, 41, 17–23, doi:10.1111/j.1472-765X.2005.01724.x.
[6]  Dall’Agnol, L.T.; Martins, R.N.; Vallinoto, A.C.R.; Ribeiro, K.T.S. Diversity of Chromobacterium violaceum isolates from aquatic environments of state of Pará, Brazilian Amazon. Mem. Inst. Oswaldo Cruz Rio de Janeiro 2008, 103, 678–682, doi:10.1590/S0074-02762008000700009.
[7]  Lewis, K.; Ausubel, F.M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 2006, 24, 1504–1507, doi:10.1038/nbt1206-1504.
[8]  Bhullar, K.; Waglechner, N.; Pawlowski, A.; Koteva, K.; Banks, E.D.; Johnston, M.D.; Barton, H.A.; Wright, G.D. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 2012, 7, e34953.
[9]  Barlow, M.; Hall, B.G. Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. J. Mol. Evol. 2002, 5, 314–321, doi:10.1007/s00239-002-2328-y.
[10]  Davies, J.E.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433, doi:10.1128/MMBR.00016-10.
[11]  Martínez, J.-L. Natural antibiotic resistance and contamination by antibiotic resistance determinants: The two ages in the evolution of resistance to antimicrobials. Front. Microbiol. 2012, 3, doi:10.3389/fmicb.2012.00001.
[12]  Knapp, C.W.; Dolfing, J.; Ehlert, P.A.I.; Graham, D.W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 2010, 44, 560–587.
[13]  Wackernagel, M.; Rees, W. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, Canada, 1996.
[14]  Wright, G.D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5, 175–186, doi:10.1038/nrmicro1614.
[15]  Martinez, J.-L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321, 365–367, doi:10.1126/science.1159483.
[16]  Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259, doi:10.1038/nrmicro2312.
[17]  Wright, G.D. The antibiotic resistome. Expert Opin. Drug Discov. 2010, 5, 779–788, doi:10.1517/17460441.2010.497535.
[18]  Snow, J. The cholera near Golden Square, and at Deptford. Med. Times Gaz. 1854, 9, 321–322.
[19]  Das, S.; Saha, R.; Kaur, I.R. Trends of antibiotic resistance of Vibrio cholerae strains from East Dehli. Indian J. Med. Res. 2008, 127, 478–482.
[20]  Wang, R.; Lou, J.; Liu, J.; Zhang, L.; Li, J.; Kan, B. Antibiotic resistance of Vibrio cholera O1 EI Tor strains from the seventh pandemic in China, 1961–2010. Int. J. Antimicrob. Agents 2012, 40, 361–364, doi:10.1016/j.ijantimicag.2012.06.010.
[21]  Sj?lund-Karlsson, M.; Reimer, A.; Folster, J.P.; Walker, M.; Dahourou, G.A.; Batra, D.G.; Martin, I.; Joyce, K.; Parsons, M.B.; Boncy, J.; et al. Drug resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg. Infect. Dis. 2154, 17, 2151–2154, doi:10.3201/eid1711.110720.
[22]  B?rjesson, S.; Matussek, A.; Melin, S.; L?fgren, S.; Lindgren, P.E. Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: An uncharted threat? J. Appl. Microbiol. 2010, 108, 1244–1251, doi:10.1111/j.1365-2672.2009.04515.x.
[23]  Fuentefria, D.B.; Ferreira, A.E.; Cor??o, G. Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: Are they genetically related? J. Environ. Manag. 2011, 92, 250–255, doi:10.1016/j.jenvman.2010.09.001.
[24]  Araújo, C.; Torres, C.; Silva, N.; Carneiro, C.; Gon?alves, A.; Radhouani, H.; Correia, S.; da Costa, P.M.; Paccheco, R.; Zarazaga, M.; et al. Vancomycin-resistant enterococci from Portuguese wastewater treatment plants. J. Basic Microbiol. 2010, 50, 605–609, doi:10.1002/jobm.201000102.
[25]  Sahlstr?m, L.; Rehbinder, V.; Albihn, A.; Aspan, A.; Bengtsson, B. Vancomycin resistant enterococci (VRE) in Swedish sewage sludge. Acta Vet. Scand. 2009, 51, 24–33, doi:10.1186/1751-0147-51-24.
[26]  Bartlett, J.G. Historical perspectives on studies of Clostridium difficile and C. difficile infection. Clin. Infect. Dis. 2008, 46 (Suppl. 1), S4–S11, doi:10.1086/521865.
[27]  Huang, H.; Weintraub, A.; Fang, H.; Nord, C.E. Antimicrobial resistance in Clostridium difficile. Int. J. Antimicrob. Agents 2009, 34, 516–522, doi:10.1016/j.ijantimicag.2009.09.012.
[28]  Spigaglia, P.; Barbanti, F.; Mastrantonio, P. Multidrug resistance in European Clostridium difficile clinical isolates. J. Antimicrob. Chemother. 2011, 66, 2227–2234, doi:10.1093/jac/dkr292.
[29]  Aslam, S.; Hamill, R.J.; Musher, D.M. Treatment of Clostridium difficile-associated disease: Old therapies and new strategies. Lancet Infect. Dis. 2005, 5, 549–557, doi:10.1016/S1473-3099(05)70215-2.
[30]  Riggs, M.M.; Sethi, A.K.; Zabarsky, T.F.; Eckstein, E.C.; Jump, R.L.P.; Donskey, C.J. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin. Infect. Dis. 2007, 45, 992–998.
[31]  Weese, J.S.; Staempfli, H.R.; Prescott, J.F. A prospective study of the roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in equine diarrhoea. Equine Vet. J. 2001, 33, 403–409.
[32]  B?verud, V. Clostridium difficile diarrhea: Infection control in horses. Vet. Clin. North Am. Equine Pract. 2004, 20, 615–630, doi:10.1016/j.cveq.2004.07.005.
[33]  Thean, S.; Elliott, B.; Riley, T.V. Clostridium difficile in horses in Australia—A preliminary study. J. Med. Microbiol. 2011, 60, 1188–1192, doi:10.1099/jmm.0.030908-0.
[34]  Eliopoulos, G.M.; Maragakis, L.L.; Perl, T.M. Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis. 2008, 46, 1254–1263, doi:10.1086/529198.
[35]  Corbella, X.; Montero, A.; Pujol, M.; Domínguez, M.A.; Ayats, J.; Argerich, M.J.; Garrigosa, F.; Ariza, J.; Gudiol, F. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J. Clin. Microbiol. 2000, 38, 4086–4095.
[36]  Aygün, G.; Demirkiran, O.; Utku, T.; Mete, B.; Urkmez, S.; Yilmaz, M.; Ya?ar, H.; Dikmen, Y.; Oztürk, R. Environmental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. J. Hosp. Infect. 2002, 52, 259–262, doi:10.1053/jhin.2002.1300.
[37]  Poirel, L.; Nordmann, P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 2006, 12, 826–836, doi:10.1111/j.1469-0691.2006.01456.x.
[38]  Lambiase, A.; Piazza, O.; Rossano, F.; Del Pezzo, M.; Tufano, R.; Catania, M.R. Persistence of carbapenem-resistant Acinetobacter baumannii strains in an Italian intensive care unit during a forty-six month study period. New Microbiol. 2012, 35, 199–206.
[39]  Davis, K.A.; Moran, K.A.; McAllister, C.K.; Gray, P.J. Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg. Infect. Dis. 2005, 11, 1218–1224, doi:10.3201/1108.050103.
[40]  Hujer, K.M.; Hujer, A.M.; Hulten, E.A.; Bajaksouzian, S.; Adams, J.M.; Donskey, C.J.; Ecker, D.J.; Massire, C.; Eshoo, M.W.; Sampath, R.; et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother. 2006, 50, 4114–4123, doi:10.1128/AAC.00778-06.
[41]  Yun, H.C.; Murray, C.K.; Roop, S.A.; Hospenthal, D.R.; Gourdine, E.; Dooley, D.P. Bacteria recovered from patients admitted to a deployed US military hospital in Baghdad, Iraq. Mil. Med. 2006, 171, 821–825.
[42]  Hawley, J.S.; Murray, C.K.; Griffith, M.E.; McElmeel, L.; Fulcher, L.C.; Hospenthal, D.R.; Jorgensen, J.H. Susceptibility of Acinetobacter strains isolated from deployed US military personnel. Antimicrob. Agents Chemother. 2007, 51, 376–378, doi:10.1128/AAC.00858-06.
[43]  Scott, P.; Deye, G.; Srinivasan, A.; Murray, C.; Moran, K.; Hulten, E.; Fishbain, J.; Craft, D.; Riddell, S.; Lindler, L.; et al. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin. Infect. Dis. 2007, 44, 1577–1584, doi:10.1086/518170.
[44]  Griffith, M.E.; Ceremuga, J.M.; Ellis, M.W.; Guymon, C.H.; Hospenthal, D.R.; Murray, C.K. Acinetobacter skin colonization of US Army Soldiers. Infect. Control Hosp. Epidemiol. 2006, 27, 659–661, doi:10.1086/506596.
[45]  Jones, A.; Morgan, D.; Walsh, A.; Turton, J.; Livermore, D.; Pitt, T.; Green, A.; Gill, M.; Mortiboy, D. Importation of multidrug-resistant Acinetobacter spp. infections with casualties from Iraq. Lancet Infect. Dis. 2006, 6, 317–318, doi:10.1016/S1473-3099(06)70471-6.
[46]  Turton, J.F.; Kaufmann, M.E.; Gill, M.J.; Pike, R.; Scott, P.T.; Fishbain, J.; Craft, D.; Deye, G.; Riddell, S.; Lindler, L.E.; et al. Comparison of Acinetobacter baumannii isolates from the United Kingdom and the United States that were associated with repatriated casualties of the Iraq conflict. J. Clin. Microbiol. 2006, 44, 2630–2634, doi:10.1128/JCM.00547-06.
[47]  Tien, H.C.; Battad, A.; Bryce, E.A.; Fuller, J.; Mulvey, M.; Brisebois, R.; Doucet, J.J.; Rizoli, S.B.; Fowler, R.; Simor, A. Multi-drug resistant Acinetobacter infections in critically injured Canadian Forces soldiers. BMC Infect. Dis. 2007, 7, e95, doi:10.1186/1471-2334-7-95.
[48]  Griffith, M.E.; Lazarus, D.R.; Mann, P.B.; Boger, J.A.; Hospenthal, D.R.; Murray, C.K. Acinetobacter skin carriage among US army soldiers deployed in Iraq. Infect. Control Hosp. Epidemiol. 2007, 28, 720–722, doi:10.1086/518966.
[49]  Chee-Sanford, J.C.; Aminov, R.I.; Krapac, I.J.; Garrigues-JeanJean, N.; Mackie, R.I. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl. Environ. Microbiol. 2001, 67, 1494–1502.
[50]  Kümmerer, K. Resistance in the environment. J. Antimicrob. Chemother. 2004, 54, 311–320, doi:10.1093/jac/dkh325.
[51]  Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotics resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450, doi:10.1021/es060413l.
[52]  Kehrenberg, C.; Friederichs, S.; de Jong, A.; Michael, G.B.; Schwarz, S. Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis. J. Antimicrob. Chemother. 2005, 58, 18–22.
[53]  Garnier, F.; Raked, N.; Gassama, A.; Denis, F.; Ploy, M.-C. Genetic environment of quinolone resistance gene qurB2 in a complex sul1-type integron in the newly described Salmonella enterica serovar Keurmassar. J. Antimicrob. Chemother. 2006, 50, 3200–3202, doi:10.1128/AAC.00293-06.
[54]  Cattoir, V.; Poirel, L.; Aubert, C.; Soussy, C.-J.; Nordmann, p. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp. Emerg. Infect. Dis. 2008, 14, 231–237, doi:10.3201/eid1402.070677.
[55]  Poirel, L.; Cattoir, V.; Nordmann, P.; Amábile-Cuevas, C.F.; Arredondo-García, J.L.; Cruz, A.; Rosas, I. Fluoroquinolone resistance in clinical and environmental isolates of Escherichia coli in Mexico city. J. Appl. Microbiol. 2010, 108, 158–162, doi:10.1111/j.1365-2672.2009.04401.x.
[56]  Poirel, L.; Cattoir, V.; Nordmann, P. Plasmid-mediated quinolone resistance: Interactions between human, animal, and environmental ecologies. Front. Microbiol. 2012, 3, doi:10.3389/ fmicb.2012.00024.
[57]  Jensen, L.; Agers?, Y.; Sengel?v, G. Presence of erm genes among macrolide-resistant Gram-positive bacteria isolated from Danish farm soil. Environ. Int. 2002, 28, 487–491, doi:10.1016/S0160-4120(02)00076-4.
[58]  Soge, O.O.; Tivoli, L.D.; Meschke, J.S.; Roberts, M.C. A conjugative macrolide resistance gene, mef(A), in environmental Clostridium perfringens carrying multiple macrolide and/or tetracycline resistance genes. J. Appl. Microbiol. 2009, 106, 34–40, doi:10.1111/j.1365-2672.2008.03960.x.
[59]  Roberts, M.C. Environmental macrolide-lincosamide-streptogramin and tetracycline resistant bacteria. Front. Microbiol. 2011, 2, doi:10.3389/fmicb.2011.00040.
[60]  Antunes, P.; Machado, J.; Sousa, J.C.; Peixe, L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. J. Antimicrob. Agents Chemother. 2005, 49, 836–839, doi:10.1128/AAC.49.2.836-839.2005.
[61]  Schmitt, H.; Beelen, P.V.; Tolls, J.; Leeuwan, C.L. Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ. Sci. Technol. 2004, 38, 1148–1153.
[62]  Heuer, H.; Solehati, Q.; Zimmerling, U.; Kleineidam, K.; Schloter, M.; Tanja Müller, T.; Focks, A.; Thiele-Bruhn, S.; Smalla, K. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl. Environ. Microbiol. 2011, 77, 2527–2530, doi:10.1128/AEM.02577-10.
[63]  Sk?ld, O. Resistance to trimethoprim and sulfonamides. Vet. Res. 2001, 32, 261–273, doi:10.1051/vetres:2001123.
[64]  Granier, S.A.; Moubareck, C.; Colaneri, C.; Lemire, A.; Roussel, S.; Dao, T.-T.; Courvalin, P.; Brisabois, A. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl. Environ. Microbiol. 2011, 77, 2788–2790.
[65]  Mulvey, M.R.; Bryce, E.; Boyde, D.; Ofner-Agostini, M.; Christianson, S.; Simor, A.E.; Paton, S. Ambler class A extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. in Canadian hospitals. Antimicrob. Agents Chemother. 2004, 48, 1204–1214.
[66]  Hawser, S.P.; Bouchillon, S.K.; Hoban, D.J.; Badal, R.E.; Hsueh, P.-R.; Paterson, D.L. Emergence of high levels of extended-spectrum-β-lactamase-producing Gram-negative bacilli in the Asia-Pacific region: Data from the Study for Monitoring Antimicrobial Resistance Trends (SMART) Program, 2007. Antimicrob. Agents Chemother. 2009, 53, 3280–3284, doi:10.1128/AAC.00426-09.
[67]  Hansen, D.S.; Schumacher, H.; Hansen, F.; Stegger, M.; Hertz, F.B.; Sch?nning, K.; Justesen, U.S.; Frimodt-M?ller, N. DANRES Study Group. Extended-spectrum β-lactamase (ESBL) in Danish clinical isolates of Escherichia coli and Klebsiella pneumoniae: Prevalence, β-lactamase distribution, phylogroups, and co-resistance. Scand. J. Infect. Dis. 2012, 44, 174–181, doi:10.3109/00365548.2011.632642.
[68]  Diwan, V.; Chandran, S.P.; Tamhankar, A.J.; St?lsby Lundborg, C.; Macaden, R. Identification of extended-spectrum β-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India. J. Antimicrob. Chemother. 2012, 67, 857–859, doi:10.1093/jac/dkr564.
[69]  Shaheen, B.W.; Nayak, R.; Foley, S.L.; Kweon, O.; Deck, J.; Park, M.; Rafii, F.; Boothe, D.M. Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob. Agents Chemother. 2011, 55, 5666–5675, doi:10.1128/AAC.00656-11.
[70]  Daughton, C.; Ternes, T. Pharmaceuticals and personal care products in the environment: Agents of subtle change. Environ. Health Perspect. 1999, 107, 907–938, doi:10.1289/ehp.99107s6907.
[71]  Diaz-Cruz, M.S.; Lopez de Alda, M.J.; Barcelo, D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal. Chem. 2003, 22, 340–351, doi:10.1016/S0165-9936(03)00603-4.
[72]  Golet, E.M.; Xifra, I.; Seigrist, H.; Adler, A.; Giger, W. Environmental exposure assessment of flouroquinolone antibacterial agents from sewage to sludge. Environ. Sci. Technol. 2003, 37, 3243–3249, doi:10.1021/es0264448.
[73]  Halling-S?rensen, B.; Nors Nielsen, S.; Lanzky, P.F.; Ingerslev, F.; Holten Lützh?ft, H.C.; J?rgensen, S.E. Occurrence, fate and effects of pharmaceutical substances in the environment— A review. Chemosphere 1998, 36, 357–393, doi:10.1016/S0045-6535(97)00354-8.
[74]  Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.-L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118, doi:10.1016/S0048-9697(98)00337-4.
[75]  Jjemba, P.K. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: A review. Agric. Ecosyst. Environ. 2002, 93, 267–278, doi:10.1016/S0167-8809(01)00350-4.
[76]  Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211, doi:10.1021/es011055j.
[77]  Kümmerer, K. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 2003, 52, 5–7, doi:10.1093/jac/dkg293.
[78]  Wollenberger, L.; Halling-S?rensen, B.; Kusk, K.O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 2000, 40, 723–730, doi:10.1016/S0045-6535(99)00443-9.
[79]  Lanzky, P.F.; Halling-S?rensen, B. The toxic effect of the antibiotic metronidiazole on aquatic organisms. Chemosphere 1997, 35, 2553–2561, doi:10.1016/S0045-6535(97)00324-X.
[80]  Migliore, L.; Civitareale, C.; Bramnilla, G.; di Delupis, G.D. Toxicity of several important agricultural antibiotics to Artemia. Water Res. 1997, 31, 1801–1806, doi:10.1016/S0043-1354(96)00412-5.
[81]  Ebert, I.; Bachmann, J.; Kühnen, U.; Küster, A.; Kussatz, C.; Maletzki, D.; Schlüter, C. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ. Toxicol. Chem. 2011, 30, 2786–2792, doi:10.1002/etc.678.
[82]  Wu, C.; Spongberg, A.L.; Witter, J.D. Sorption and biodegradation of selected antibiotics in biosolids. J. Environ. Sci. Health Part A 2009, 44, 454–461, doi:10.1080/10934520902719779.
[83]  Wen, X.; Jia, Y.; Li, J. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus. Chemosphere 2009, 75, 1003–1007, doi:10.1016/j.chemosphere.2009.01.052.
[84]  Li, B.; Zhang, T. Biodegradation and adsorption of antibiotics in the activated sludge process. Environ. Sci. Technol. 2010, 44, 3468–3473, doi:10.1021/es903490h.
[85]  Lunestad, B.T.; Samuelsen, O.B.; Fjelde, S.; Ervik, A. Photostability of eight antibacterial agents in seawater. Aquaculture 1995, 134, 217–225, doi:10.1016/0044-8486(95)00065-A.
[86]  Boreen, A.L.; Arnold, W.A.; McNeill, K. Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquat. Sci. Res. Across Boundaries 2004, 65, 320–341.
[87]  Werner, J.J.; Arnold, W.A.; McNeill, K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration and pH. Environ. Sci. Technol. 2006, 40, 7236–7241, doi:10.1021/es060337m.
[88]  Ge, L.; Chen, J.; Zhang, S.; Cai, X.; Wang, Z.; Wang, C. Photodegradation of flouroquinolone antibiotic gatifloxacin in aqueous solutions. Chin. Sci. Bull. 2010, 55, 1495–1500, doi:10.1007/s11434-010-3139-y.
[89]  Yuan, F.; Hu, C.; Hu, X.; Wei, D.; Chen, Y.; Qu, J. Photodegradation and toxicity changes of antibiotics in UV and UV/H(2)O(2) process. J. Hazard. Mater. 2011, 185, 1256–1263, doi:10.1016/j.jhazmat.2010.10.040.
[90]  Gu, C.; Karthikeyan, K.G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol. 2005, 39, 9166–9173, doi:10.1021/es051109f.
[91]  Wang, Y.-J.; Jia, D.-A.; Zhu, H.-W.; Zhou, D.-M. Adsorption and cosorption of tetracycline and copper (II) on montmorillonite as affected by soil pH. Environ. Sci. Technol. 2008, 42, 3254–3259, doi:10.1021/es702641a.
[92]  Aristilde, L.; Sposito, G. Molecular modeling of metal complexation by a flouroquinolone antibiotic. Environ. Toxicol. Chem. 2008, 27, 2304–2310, doi:10.1897/08-059.1.
[93]  Zhang, Y.; Cai, X.; Lang, X.; Qiao, X.; Li, X.; Chen, J. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture. Environ. Pollut. 2012, 166, 48–56, doi:10.1016/j.envpol.2012.03.009.
[94]  Tias, P.; Machesky, M.L.; Strathmann, T.J. Surface complexation of the zwittterionic flouroquinolone antibiotic ofloxacin to nano-anatase TiO2 photocatalyst surfaces. Environ. Sci. Technol. 2012, 46, 11896–11904.
[95]  Rab?lle, M.; Spliid, N. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soils. Chemosphere 2000, 40, 715–722, doi:10.1016/S0045-6535(99)00442-7.
[96]  Cardoza, L.A.; Knapp, C.W.; Larive, C.K.; Belden, J.B.; Lydy, M.; Graham, D.W. Factors affecting the fate of ciprofloxacin in aquatic field systems. Water Air Soil Pollut. 2005, 161, 383–398, doi:10.1007/s11270-005-5550-6.
[97]  Jia, D.-A.; Zhou, D.-M.; Wang, Y.-J.; Zhu, H.-W.; Chen, J.-L. Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma 2008, 146, 224–230, doi:10.1016/j.geoderma.2008.05.023.
[98]  Ji, L.; Chen, W.; Zheng, S.; Xu, Z.; Zhu, D. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 2009, 25, 11608–11613, doi:10.1021/la9015838.
[99]  Ji, L.; Liu, F.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environ. Sci. Technol. 2010, 44, 3116–3122.
[100]  Zhang, D.; Pan, B.; Zhang, H.; Ning, P.; Xing, B. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environ. Sci. Technol. 2010, 44, 3806–3811, doi:10.1021/es903851q.
[101]  Chen, W.-R.; Huang, C.-H. Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere 2010, 79, 779–785, doi:10.1016/j.chemosphere.2010.03.020.
[102]  Ji, L.; Shao, Y.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ. Sci. Technol. 2010, 44, 6429–6436, doi:10.1021/es1014828.
[103]  Marc Teixidó, M.; Pignatello, J.J.; Beltrán, J.L.; Granados, M.; Peccia, J. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol. 2011, 45, 10020–10027.
[104]  Ji, L.; Wan, Y.; Zheng, S.; Zhu, D. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption. Environ. Sci. Technol. 2011, 45, 5580–5586, doi:10.1021/es200483b.
[105]  Haham, H.; Oren, A.; Chefetz, B. Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils. Environ. Sci. Technol. 2012, 46, 11870–11877, doi:10.1021/es303189f.
[106]  Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatt-Kassino, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995, doi:10.1016/j.watres.2012.11.027.
[107]  Rizzo, L.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistance spreading into the environment. Sci. Total Environ. 2013, 447, 345–360, doi:10.1016/j.scitotenv.2013.01.032.
[108]  Zhao, C.; Pelaez, M.; Duan, X.; Deng, H.; O’Shea, K.; Fatta-Kassinos, D.; Dionysiou, D.D. Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: Kinetics and mechanism studies. Appl. Catal. B Environ. 2013, 134–135, 83–92, doi:10.1016/j.apcatb.2013.01.003.
[109]  Trovó, A.G.; Nogueira, R.F.P.; Agüera, A.; Fernandez-Alba, A.R.; Sirtori, C.; Malato, S. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res. 2009, 43, 3922–3931.
[110]  Xekoukoulotakis, N.P.; Drosou, C.; Brebou, C.; Chatzisymeon, E.; Hapeshi, E.; Fatta-Kassinos, D.; Mantzavinos, D. Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catal. Today 2011, 161, 163–168.
[111]  Sirtori, C.; Agüera, A.; Gernjak, W.; Malato, S. Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Res. 2010, 44, 2735–2744.
[112]  Vasquez, M.I.; Hapeshi, E.; Fatta-Kassinos, D.; Kümmerer, K. Biodegradation potential of ofloxacin and its resulting transformation products during photolytic and photocatalytic treatment. Environ. Sci. Pollut. Res. 2013, 20, 1302–1309, doi:10.1007/s11356-012-1096-5.
[113]  Sturini, M.; Speltini, A.; Maraschi, F.; Pretali, L.; Profumo, A.; Fasani, E.; Albini, A.; Migliavacca, R.; Nucleo, E. Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Res. 2012, 46, 5575–5582.
[114]  Novo, A.; Manaia, C.M. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Appl. Microbiol. Biotechnol. 2010, 87, 1157–1166, doi:10.1007/s00253-010-2583-6.
[115]  Da Silva, M.F.; Tiago, I.; Veríssimo, A.; Boaventura, R.A.R.; Nunes, O.C.; Manaia, C.M. Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiol. Ecol. 2005, 55, 322–329.
[116]  Michael, I.; Hapeshi, E.; Michael, C.; Varela, A.R.; Kyriakou, S.; Manaia, C.M.; Fatta-Kassinos, D. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res. 2012, 46, 5621–5634, doi:10.1016/j.watres.2012.07.049.
[117]  De Boer, T.E.; Ta?, N.; Martin Braster, M.; Temminghoff, E.J.M.; R?ling, W.F.M.; Roelofs, D. The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation. Environ. Sci. Technol. 2012, 46, 60–68.
[118]  Bischoff, K.M.; Liu, S.; Leathers, T.D.; Worthington, R.E.; Rich, J.O. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol. Bioeng. 2009, 103, 117–122.
[119]  Basaraba, R.J.; Oehme, F.W.; Vorhies, M.W.; Stokka, G.L. Toxicosis in cattle from concurrent feeding of monensin and dried distillers grains contaminated with macrolide antibiotics. J. Vet. Diagn. Invest. 1999, 11, 79–86, doi:10.1177/104063879901100113.
[120]  Islam, M.; Toledo, R.; Hamdy, M.K. Stability of virginiamycin and penicillin during alcohol fermentation. Biomass. Bioenergy 1998, 17, 369–385, doi:10.1016/S0961-9534(99)00052-5.
[121]  Jacob, M.E.; Fox, J.T.; Narayanan, S.K.; Drouillard, J.S.; Renter, D.G.; Nagaraja, T.G. Effects of feeding wet corn distillers grains with solubles with or without monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne pathogenic and commensal bacteria in feedlot cattle. J. Anim. Sci. 2008, 86, 1182–1190.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133