全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Arts  2013 

The Destructive/Non-Destructive Identification of Enameled Pottery, Glass Artifacts and Associated Pigments—A Brief Overview

DOI: 10.3390/arts2030077

Keywords: cultural heritage, analysis, pottery, glass, enamel, pigments, spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

The birth of Chemistry can be found in two main practices: (i) the Arts du feu (ceramic and glass, metallurgy, i.e., inorganic and solid state chemistry) and (ii) the preparation of remedies, alcohols and perfumes, dyes, i.e., organic and liquid state chemistry). After a brief survey of the history of (glazed) pottery and (enameled) glass artifacts, the development of destructive and non-destructive analytical techniques during the last few centuries is reviewed. Emphasis is put on mobile non-destructive Raman microspectroscopy of pigments and their glass/glaze host matrices for chronological/technological expertise. The techniques of white opacification, blue, yellow, green, red, and black coloring, are used as examples to point out the interest of pigments as chronological/technological markers.

References

[1]  Rickard, T.A. L’Homme et les Métaux; Editions Gallimard: Paris, France, 1938.
[2]  Forbes, R.J. Metallurgy. In A History of Technology; Singer, C.H., Holmyard, E.J., Hall, A.R., Williams, T.J., Eds.; Oxford University Press: Oxford, UK, 1975; Volume 1.
[3]  Gilles, B. Histoire des Techniques; Encyclopédie de la Pléiade, Editions Gallimard: Paris, France, 1978.
[4]  Rosmoduc, J. Une histoire de la Physique et de la Chimie; Editions du Seuil -Points-Sciences: Paris, France, 1985.
[5]  Bensaude-Vincent, B.; Stengers, I. Histoire de la Chimie; La Découverte: Paris, France, 1992.
[6]  Djebbar, A. Une histoire de la Science arabe – Entretiens avec J.; Rosmorduc, Editions du Seuil - Points-Sciences: Paris, France, 2001.
[7]  Rashed, R. Histoire des Sciences Arabes. Technologie, alchimie et sciences; Editions du Seuil: Paris, France, 1997; Volume 3.
[8]  Lory, P. Jàbir ibn Hayyàan, Dix traités d’alchimie. Les dix premiers traités du livre des Soixantes-dix (Textes traduits et présentés); Sindbad: Paris, France, 1983.
[9]  Gimpel, J. La révolution industrielle du Moyen Age; Editions du Seuil - Points-Histoire: Paris, France, 1975.
[10]  Cosandey, D. Le Secret de l’Occident – Vers une Théorie Générale du Progrès Scientifique; Champs-Flammarion: Paris, France, 2007.
[11]  Herodote. Historia (~450 BC, Athènes). translated and edited by Larcher and Charpentier: Paris, France; 1850.
[12]  Theophraste. Recherches sur les Plantes—Le Livre des Pierres (Athènes, 300 B.C.); Les Belles Lettres: Paris, France, 2006. tome V.
[13]  Dioscoride, P. De Materia Medica (Rome, 60); Henri Estienne: Paris, France, 1516.
[14]  Pline. In Naturalis Historia. Vol XII-XXXVII (Rome, 77); French translation, Veuve Desaint: Paris, France, 1771.
[15]  Strabon. Ge?graphiká (Rome, 20). Hamilton, H.C., Transl.; Falconer, W., Bohn, H.G.: London, UK; pp. 1854–1857.
[16]  Gougguenheim, S. Aristote au Mont Saint-Michel – Les Racines Grecques de l’Europe Chrétienne; Editions du Seuil – L’Univers Historique: Paris, France, 2008.
[17]  Lambert, A. Bibliothèque de Physique et d’Histoire Naturelle; Veuve David Jeune: Paris, France, 1758; Volume 5.
[18]  (Abbé) Nollet, J.A. Le?ons de Physique Expérimentale; Les Frères Guerin: Paris, France, 1769; Volume 6.
[19]  Macquer, M. Elemens de Chymie-Pratique; Herissant, J.-T., Ed.; Paris, 1751. , Didot, Paris, France, 1766–1777; Volume 2.
[20]  Buffon (Georges Leclerc Comte de). Histoire Naturelle des Minéraux; Imprimerie Royale: Paris, France, 1787; Volume 7.
[21]  Théophilus(11th–12th c.). Schedula Diversarum Artium; Theophilus: the various arts, London, UK, 1961.
[22]  El Lapidario del Rey Alphonso X; translation in Spanish by King Alfonso in the year 1279, see ibidem in N. Heaton. In J. British Society of Master Glass-Painters; 1947; Volume 48, pp. 9–24.
[23]  Lautier, Cl.; Sandron, D. Antoine de Pise – L’art du vitrail vers 1400; Comité des travaux historiques et scientifiques (CTHS, Coll. Corpus Vitrearum – France, série ? études ?: Paris, France, 2008; Volume vol. VIII.
[24]  al-Qasem Kashani Abu. Arayes al-javaher; Afshar, I., Ed.; Teheran, 1966. see also J.W. Allan Iran, 1973, ,111–140.
[25]  Porter, Y. Les Techniques du lustre Métallique - Jowhar-Name-ye-Nezam (1196), Actes du VIIe Congrès International sur la Céramique Médiévale en Méditerranée, Thessaloniki, 11–16 October 1999; Caisse des Recettes Archéologiques: Athènes, Grece, 2003; pp. 427–436.
[26]  Cannela, A.-F. Gemmes, verre coloré, fausses pierres précieuses au Moyen ?ge, Le quatrième livre du ?Trésorier de Philosophie naturelle des pierres précieuses ? de Jean d’Outremeuse. Bibliothèque de la Faculté de Philosophie et Lettres de l’Université de Liège-Fascicule CCLXXXVIII; Librairie Droz S.A.: Genève, Suisse, 2006.
[27]  Picolpasso, C. Li Tre Libri dell’Arte del Vasaio; 1557. first translated and edited by C. Popelin, , (Paris, 1881). See also , La Revue de La Céramique et du Verre (Fac-Similé Edition), Vendin-le-Vieil, France 2007.
[28]  Bauer, G., alias Agricola. De Re Metallica, (Fac-similé Edition) ed.; Froben: Basel, 1556. Klopp, G., Transl.; Klopp Editeur-Imprimeur; Thionville, 1987.
[29]  Perez de Vargas, B. De Re Metallica; Madrid, Spain, 1568. idem , Prault Père: Paris, France, 1743.
[30]  Rosetti, G. Plictho de l’arte de Tentori(1548); The MIT Press: Cambridge, MA, USA, 1969.
[31]  Lomazzo, G.P. Trattato Dell’arte Della Pittura; Paolo Gottardo Ponto: Milan, Italy, 1590.
[32]  Merrett, C. The World’s Most Famous Book on Glassmaking ‘The Art of Glass’ by Antonio Neri; Cable, M., Ed.; Sheffield, England, 1662. see, The Society of Glass and Technology Reprint, (1 published in 1612).
[33]  Brunet, P. Les premiers linéaments de la Science Géologique: Agricola, Palissy, G. Owen. Rev. Hist. Sci. Appl 1950, 3, 67–79.
[34]  Alléon-Dulac, J.-L. Mémoire pour servir à l’histoire naturelle des provinces de Lyonnais, Forez et Beaujolais. imprimé chez Claude Cizeron; Lyon, France, 1765.
[35]  Merrifield, M.P. Medieval and Renaissance Treatises on the Arts of Painting (1849). reprint; Merified: New York, NY, USA, 1967.
[36]  Berthelot, M. Introduction à la Chimie des Anciens; Steinheil: Paris, France, 1889.
[37]  Ferchault de Réaumur, R.A. Observations sur la matière qui colore des perles fausses et sur quelques autres matières animales d’une semblable couleur, à l’occasion de quoi on essaie d’expliquer la formation des écailles de poissons, Mémoires Académie des Sciences, Paris, France, 1716. Idée générale des différentes manières dont on peut faire la Porcelaine et quelles sont les véritables matières de celle de la Chine, ibidem, 1727. Second mémoire sur la porcelaine ou suite des principes qui doivent conduire dans la composition des porcelaines de différents genres et qui établissent les caractères des matières fondantes qu’on ne peut choisir pour tenir lieu de celle qu’on employe à la Chine, ibidem, 1729. Mémoire sur l’art de faire une nouvelle espèce de Porcelaine par des moyens extrêmement simples et faciles ou de transformer le verre en porcelaine, ibidem, 1739.
[38]  Lewis, W. Glass and Enamel by Preparations of Gold. In Commercium Philosophico-Technicum; or, The Philosophical Commerce of Arts: Designed as an Attempt to Improve Arts, Trades, and Manufactures; London, UK, 1763; p. 170.
[39]  d’Albis, A. Steps in the Manufacture of the Soft Paste Porcelain of Vincennes, According to the Book of Hellot. In Ancient Technology to Modern Science; Kingery, W.D., Ed.;. Ceramic and Civilization Serie The American Ceramic SocIety: Columbus, USA, 1984; Volume 1.
[40]  Brongniart, A. Mémoire sur la Peinture sur Verre; Imprimerie Sellingue: Paris, France, 1829. see also Mezzadri, B.; , , , 5–10.
[41]  Brongniart, A. Traité des Arts Céramiques ou des Poteries Considérées dans leur Histoire, leur Pratique et leur Théorie, 3rd ed.. ed.; Libraire de la Faculté de Médecine: Paris, France, 1877; Volume 2.
[42]  Salvetat, L.A. Le?ons de Céramiques professées à l’Ecole Centrale des Arts et Manufactures; Malet-Bachelier: Paris, France, 1857.
[43]  Bontemps, G. Guide du Verrier-Traité Historique et Pratique de la Fabrication des Verres, Cristaux, Vitraux; Librairie du Dictionnaire des Arts Manufacturés: Paris, France, 1868.
[44]  Deck, Th. La Fa?enc; Maison Quantin: Paris, France, 1887.
[45]  Bastenaire-Daudenart, F. L’Art de fabriquer la fa?ence; La Librairie Scientifique et Industrielle, De Mahler et Cie: Paris, France, 1827.
[46]  Jacquemart, A. Histoire de la Céramique; Librairie Hachette et Cie: Paris, France, 1875.
[47]  Cooper, E. Ten Thousand Years of Pottery; British Museum Press: London, UK, 2000.
[48]  Vandiver, P.B.; Soffer, O.; Klina, B.; Svoboda, J. The origin of ceramic technology at Dolni-Vestonice Czechoslovakia. Science 1989, 246, 1002–1008.
[49]  Begouen (Comte de); La Grotte préhistorique, C.R. Séances Acad. Inscription Belles Lett. 1912, 56, 532–538, doi:10.3406/crai.1912.73103.
[50]  McCray, P. Prehistory and History of Glassmaking Technology; The American Ceramic Society: Westerville, OH, USA, 1998; Ceramics and Civilization Series Volume VIII.
[51]  Kingery, W.D. Ancient Technology to Modern Science; The American Ceramic Society: Westerville, OH, USA, 1984; Ceramic and Civilization Volume I.
[52]  Kingery, W.D. Technology and Style; The American Ceramic Society: Westerville, OH, USA, 1986; Ceramic and Civilization Volume II.
[53]  Kingery, W.D. High Technology Ceramics –Past, Present, and Future. The Nature of Innovation and Change in Ceramic Technology; The American Ceramic Society: Westerville, OH, USA, 1986; Ceramic and Civilization Volume III.
[54]  McGovern, P.E.; Notis, M.D.; Kingery, W.D. Cross-craft and Cross-Cultural Interactions in Ceramics; The American Ceramic Society: Westerville, OH, USA, 1989; Ceramic and Civilization Volume IV.
[55]  Li, J. The Evolution of Chinese Pottery and Porcelain Technology. In Ancient Technology to Modern Science; Kingery, W.D., Ed.; The American Ceramic Society: Westerville, OH, USA, 1984; Ceramic and Civilization Volume I, pp. 135–162.
[56]  Leon, Y.; Lofrumento, C.; Zoppi, A.; Carles, R.; Castelluci, E.M.; Sciau, P. Micro-Raman investigation of terra sigillata slip: A comparison study of central Italian and southern Gaul productions. J. Raman Spectrosc. 2010, 41, 1550–1555, doi:10.1002/jrs.2678.
[57]  Colomban, P.; Truong, C. A Non-destructive Raman Study of the Glazing Technique in Lustre Potteries and Faiences (9th-14th centuries): Silver ions, Nanoclusters, Microstructure and Processing. J. Raman Spectrosc. 2004, 35, 195–207, doi:10.1002/jrs.1128.
[58]  Colomban, P.; Sagon, G.; Louhichi, A.; Binous, H.; Ayed, N. Identification par Microscopie Raman des Tessons et Pigments de Gla?ures de l’Ifryqiya (Dougga: XI-XVIIIe siècles). Revue d’Archéomètrie 2001, 25, 101–112.
[59]  Rosi, F.; Manuali, V.; Grygar, T.; Bezdicka, P.; Brunetti, B.G.; Sgamellotti, A.; Burgio, L.; Seccaroni, C.; Miliani, C. Raman scattering features of lead pyroantimonate compounds: Implication for the non-invasive identification of yellow pigments on ancient ceramics. Part II. In situ characterisation of Renaissance plates by portable micro-Raman and XRF studies. J. Raman Spectrosc. 2011, 42, 407–414, doi:10.1002/jrs.2699.
[60]  Sandalinas, C.; Ruiz-Moreno, S.; López-Gil, A.; Miralles, J. Experimental confirmation by Raman spectroscopy of a Pb-Sn-Sb triple oxide yellow pigment in sixteenth-century Italian pottery. J. Raman Spectrosc. 2006, 37, 1146–1153, doi:10.1002/jrs.1580.
[61]  Sakellariou, K.; Miliani, C.; Morresi, A.; Ombelli, M. Spectroscopic investigation of yellow majolica glaze. J. Raman Spectrosc. 2004, 35, 61–67, doi:10.1002/jrs.1084.
[62]  Colomban, P.; Milande, V.; Le Bihan, L. On-site Raman Analysis of Iznik pottery glazes and pigments. J. Raman Spectrosc. 2004, 35, 527–535, doi:10.1002/jrs.1163.
[63]  Colomban, P.; de Laveaucoupet, R.; Milande, V. On Site Raman Analysis of Kütahya fritwares. J. Raman Spectrosc. 2005, 36, 857–863, doi:10.1002/jrs.1372.
[64]  Simsek, G.; Geckinli, E. An assessment study of tiles from Topkap? Palace Museum with energy-dispersive X-ray and Raman spectrometers. J. Raman Spectrosc. 2012, 43, 917–927, doi:10.1002/jrs.3108.
[65]  Colomban, P.; Milande, V.; Lucas, H. On-site Raman analysis of medici porcelain. J. Raman Spectrosc. 2004, 35, 68–72, doi:10.1002/jrs.1085.
[66]  Colomban, P. Recent case studies in the raman analysis of ancient ceramics: Glaze opacification in abbasid pottery, medici and 18th century french porcelains, iznik and kütahya ottoman fritwares and unexpected lapis lazuli pigment in lajvardina wares. MRS Fall Meet. Proc. 2005, 852, 153–160.
[67]  Colomban, P.; Robert, I.; Roche, C.; Sagon, G.; Milande, V. Identification des porcelaines tendres du 18ème siècle par spectroscopie Raman: Saint-Cloud, Chantilly, Mennecy et Vincennes/Sèvres. Revue d’Archéomètrie 2004, 27, 153–167.
[68]  Colomban, P.; Treppoz, F. Identification and differentiation of ancient and modern european porcelains by raman macro- and microspectroscopy. J. Raman Spectrosc. 2001, 32, 93–102, doi:10.1002/jrs.678.
[69]  Comte, X. de Chavagnac, Marquis de Grollier. In Histoire des Manufactures Fran?aises de Porcelaine; A. Picard & Fils: Paris, France, 1906.
[70]  Mostaghaci, H. Advanced Ceramic Materials; Trans Tech Publications: Zuerich-Uetikon, Switzerland, 1996; Key Engineering Materials Volume 122–124.
[71]  Ricciardi, P.; Colomban, P.; Fabbri, B.; Milande, V. Towards the establishment of a Raman database of early European porcelain. e-Preserv. Sci. 2009, 6, 22–26.
[72]  Phase Diagrams for Ceramists; American Ceramic Society: Westerville, OH, USA, 1971; Volume 10.
[73]  Carty, W.M.; Senapati, U. Porcelain-raw materials. J. Am. Ceram. Soc. 1998, 81, 3–20, doi:10.1111/j.1151-2916.1998.tb02290.x.
[74]  Carter, C.B.; Norton, M.G. Ceramic Materials—Science and Engineering; Springer: New York, NY, USA, 2007.
[75]  Colomban, P.; Sagon, G.; Faurel, X. Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. J. Raman Spectrosc. 2001, 32, 351–360, doi:10.1002/jrs.704.
[76]  Eppler, R.; Eppler, D. Glazes and Glass Coatings; The American Ceramic Society: Westerville, OH, USA, 2000.
[77]  Meneret, L. Couleurs Céramiques. ENSCI Report; ENSCI: Sèvres, France, 1975.
[78]  Colomban, P. Secrets retrouvés du Lustre Abbasside. La Revue de la Céramique et du Verre 2004, 139, 13–21. Available online: http://www.ladir.cnrs.fr/pages/colomban/Lustreceramique.pdf (accessed on 8th July 2013).
[79]  Colomban, P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to Present Times in Lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 2009, 8, 109–132, doi:10.4028/www.scientific.net/JNanoR.8.109.
[80]  Sciau, P. Nanoparticle in Ancient Materials, the Metallic Lustre of Medieval Ceramics. In The Delivery of Nanoparticles, Chapter: 25; InTech: Winchester, UK, 2012. doi:10.5772/34080.
[81]  Baroni, S. Restauration et Conservation des Tableaux—Manuel Pratique; CELIC: Paris, France, 1992.
[82]  Kendix, E.; Moscardi, G.; Mazzeo, R.; Baraldi, P.; Prati, S.; Joseph, E.; Capelli, S. Far infrared and Raman spectroscopy analysis of inorganic pigments. J. Raman Spectrosc. 2008, 39, 1104–1112, doi:10.1002/jrs.1956.
[83]  Artioli, G.; Angelini, I.; Polla, A. Crystals and phase transitions in protohistoric glass materials. Phase Trans. 2008, 81, 233–252, doi:10.1080/01411590701514409.
[84]  Vandiver, P.; Kingery, W.D. Egyptian Faience: The first High-Tech Ceramic. In High Technology Ceramics –Past, Present, and Future. The Nature of Innovation and Change in Ceramic Technology; Kingery, W.D., Ed.; The American Ceramic Society: Westerville, OH, USA, 1986; Ceramic and Civilization Volume III, pp. 19–34.
[85]  Ellis, L.; Newman, R. The analyzis of glazed quartzite sculpture from Kerma, Capital of ancient Kush (Sudan). MRS Fall Mee. Proc. 2005, 852, OO7.3–OO7.10, doi:10.1557/PROC-852-OO7.3.
[86]  Angelini, I.; Artioli, G.; Bellintani, P.; Diella, V.; Gemmi, M.; Polla, A.; Rossi, A. Chemical analyses of bronze age glasses from Frattesina di Rovigo, northern Italy. J. Archaeol. Sci. 2004, 31, 1175–1184, doi:10.1016/j.jas.2004.02.015.
[87]  Brun, N.; Mazerolles, L.; Pernot, M. Microstructure of opaque red glass containing copper. J. Mater. Sci. Lett. 1991, 10, 1418–1420, doi:10.1007/BF00735696.
[88]  Nicholson, P.T. Glass-making and glass-working at Amarna: Some new work. J. Glass Stud. 1995, 37, 11–19.
[89]  Shortland, A.J.; Tite, M.S. The Interdependence of Glass and Vitreous Faience Production at Amarna. In Prehistory and History of Glassmaking Technology; McCray, P., Ed.; The American Ceramic Society: Westerville, OH, USA, 1998; Ceramics and Civilization Series Volume VIII, pp. 251–265.
[90]  Gratuze, B.; Soulier, I.; Barrandon, J.N.; Foy, D. De l’origine du cobalt dans les verres. Revue d’Archéomètrie 1992, 16, 97–108.
[91]  Gratuze, B.; Soulier, I.; Blet, M.; Vallauri, L. De l’origine du cobalt: Du verre à la céramique. Revue d’Archéomètrie 1996, 20, 77–94.
[92]  Sciau, P.; Relaix, S.; Kihn, Y.; Roucau, C. The role of microstructure, nanostructure and composition in the brilliant red slip of Roman terra sigillata pottery from southern Gaul. MRS Fall Meet. Proc. 2005, 852, OO6.4.
[93]  Brill, R.H. Chemical Analyses of Early Glasses; The Corning Museum of glass: New York, NY, USA, 1999.
[94]  Colomban, P.; Calligaro, Th.; Vibert-Guigue, Cl.; Liem, N.Q.; Edwards, H.G.M. Accrochage des dorures sur les céramiques et tesselles anciennes. Revue d’Archéométrie-Archeosciences 2006, 29, 7–20.
[95]  Greiff, S.; Schuster, J. Technological study of enamelling on Roman glass: the nature of opacyfing, decolourising and fining agents used with the glass beakers from Lübsow (Lubieszewo, Poland). J. Cult. Herit. 2008, 9 Suppl., e27–e32, doi:10.1016/j.culher.2008.06.006.
[96]  West FitzHugh, E.; Zycherman, L.A. A purple Baryum copper silicate pigment from early China. J. Conserv. Stud. 1992, 37, 145–154, doi:10.2307/1506342.
[97]  Cheng, X.; Yin, X.; Ma, Y.; Lei, Y. Three fabricated pigments (Han purple, indigo and emerald green) in ancient Chinese artifacts studied by Raman microscopy, energy-dispersive X-ray spectrometry and polarized light microscopy. J. Raman Spectrosc. 2007, 38, 1274–1280, doi:10.1002/jrs.1766.
[98]  Bouherour, S.; Berke, H.; Wiedemann, H.G. Ancient man-made copper silicate pigments studied by Raman microscopy. Chimia 2001, 55, 942–951. Berke, H.; Wiedemann, H.G. The chemistry and fabrication of anthropogenic pigments Chinese blue and purple in ancient China. , 94–120.
[99]  Bianchetti, P.; Talarico, F.; Vigliano, M.G.; Fuad Ali, M. Production and characterization of Egyptian Blue and green frit. J. Cult. Herit. 2000, 1, 179–188, doi:10.1016/S1296-2074(00)00165-5.
[100]  Burgio, L.; Clark, R.J.H. Comparative pigment analysis of six modern Egyptian papyri and an authentic one of the 13th century BC by Raman microscopy and other techniques. J. Raman Spectrosc. 2000, 31, 395–401, doi:10.1002/1097-4555(200005)31:5<395::AID-JRS527>3.0.CO;2-E.
[101]  Guy, J. Early ninth century Chinese export ceramics and the Persian Gulf connection: the Belitung shipwreck evidence, in Chine-Méditerranée, Routes et échanges de la céramique avant le XVIe siècle. Taoci,(Editions SFECO-Findalkly,Suilly-la-Tour, France) 2005, 4, 145–152.
[102]  Fukang, Z. The Origin and Development of Traditional Chinese Glazes and Decorative Ceramic Colors. In Ancient Technology to Modern Science; Kingery, W.D., Ed.; The American Ceramic Society: Westerville, OH, USA, 1984; Ceramic and Civilization Volume I.
[103]  Wood, N. Chinese Glazes: Their Origins, Chemistry and Recreation; A & C Black Publishers Lt : London, UK, 1999.
[104]  Soustiel, J. La Céramique Islamique-Le Guide du Connaisseur; Office du Livre: Paris, France, 1985.
[105]  Tite, M.; Pradell, T.; Shortland, A. Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the late iron age onwards: A reassement. Archaeometry 2008, 50, 67–84.
[106]  Rubio, F.; Pérez-Villar, S.; Garrido, M.A.; Rubio, J.; Oteo, J.L. Application of gradient and confocal raman spectroscopy to analyze silver nanoparticle diffusion in medieval glasses. J. Nano Res. 2009, 8, 89–97, doi:10.4028/www.scientific.net/JNanoR.8.89.
[107]  Colomban, P.; Etcheverry, M.-P.; Asquier, M.; Bounichou, M.; Tournié, A. Raman identification of ancient stained glasses and their degree of deterioration. J. Raman Spectrosc. 2006, 37, 614–626, doi:10.1002/jrs.1495.
[108]  Colomban, P.; Tournié, A.; Ricciardi, P. Raman spectroscopy of copper nanoparticles-containing glass matrix: The ancient red stained-glass windows. J. Raman Spectrosc. 2009, 40, 1949–1955, doi:10.1002/jrs.2345.
[109]  Kirmizi, B.; Colomban, P.; Blanc, M. On-site Analysis of Limoges enamels from 16th to 19th century. J. Raman Spectrosc. 2010, 41, 1240–1247, doi:10.1002/jrs.2566.
[110]  Blanc, M. Emaux peints de Limoges, XVe-XVIIIe siècles – La collection du Musée des Arts décoratifs; Les arts décoratifs: Paris, France, 2011.
[111]  Kirmizi, B.; Colomban, P.; Quette, B. On-site analysis of Chinese cloisonné enamels from 15th to 19th century. J. Raman Spectrosc. 2010, 41, 780–790.
[112]  Ricciardi, P.; Colomban, P.; Tournié, A.; Milande, V. Non-destructive on-site identification of ancient glasses: Genuine artefacts, embellished pieces or forgeries? J. Raman Spectrosc. 2009, 40, 604–617, doi:10.1002/jrs.2165.
[113]  Colomban, P.; Tournié, A.; Caggiani, M.C.; Paris, C. Pigments and enamelling/gilding technology of Mamluk mosque lamps and bottle. J. Raman Spectrosc. 2012, 43, 1975–1984, doi:10.1002/jrs.4101.
[114]  Berrie, B.H.; Matthew, L.C. Material Innovation and Artistic Invention: New Materials and New Colors in Renaissance Venetian Paintings, in Scientific Examination of Art – Modern Techniques in Conservation and Analysis; The National Academies Press: Washington, DC, USA, 2005; pp. 12–26.
[115]  Atasoy, N.; Raby, J. Iznik, the Pottery of Ottoman Turkey; Petsoupoulos, Y., Ed.; Alexandria Press: London, UK, 1989; pp. 50–73.
[116]  Goder, W.; Schulle, W.; Wagenbreth, O.; Walter, H. Mise au Point Technique du grès de B?ttger et de la Porcelaine de B?ttger. In Meissen, La Découverte de la Porcelaine Européenne en Saxe – J.F. B?ttger 1709–1736; Pygmalion-Gérard Watelet: Paris, France, 1984; pp. 106–154.
[117]  Colomban, P.; Gouadec, G. The ideal ceramic fiber/oxide matrix composite: How to conciliate antagonist physical and chemical requirements? Ann. Chim. Sci. Matériaux 2005, 30, 673–688, doi:10.3166/acsm.30.673-688.
[118]  Bertran, H. Nouveau Manuel Complet de la Peinture sur Verre, sur Porcelaine et sur Email. Encyclopédie-Roret; Mulo, L., Ed.; Paris, France, 1913.
[119]  Kruger, P. Principles of Activation Analysis; Wiley Interscience: New York, NY, USA, 1971.
[120]  Pollard, A.M.; Heron, C. Archaeological Chemistr; Royal Society Chemistry Paperback: Cambridge, UK, 1996.
[121]  Janssens, K. Modern Methods for Analysing Archaeological and Historical Glass, 1st ed. ed.; John Wiley & Sons Ltd: Chichester, UK, 2012; Volume 2.
[122]  Fisher, A.; Goodall, P.; Hinds, M.W.; Nelms, S.N.; Penny, D.M. Atomic spectrometry update. Industrial analysis: Metals, chemicals and advanced materials. J. Anal. Atom. Spectrosc. 2003, 18, 1497–1528, doi:10.1039/b314153p.
[123]  Falcone, R.; Renier, A.; Verita, M. Wavelength-dispersive x-ray fluorescence analysis of ancient glasses. Archaeometry 2002, 44, 531–542, doi:10.1111/1475-4754.t01-1-00084.
[124]  Mucha, H.-J.; Bartel, H.-G.; Dolata, J. Effects of Data Transformation on Cluster Analysis of Archaeometric Data. In Data Analysis, Machine Learning and Applications Studies in Classification, Data Analysis, and Knowledge Organization; Book Series: Studies in Classification Data Analysis and Knowledge Organization, XI; Springer: Berlin, Germany, 2008; pp. 681–688.
[125]  Michelaki, K.; Hancock, R.G.V. Chemistry versus Data dispersion: Is there a better way to assess and interpret archaeometric data? Archaeometry 2011, 53, 1259–1279, doi:10.1111/j.1475-4754.2011.00590.x.
[126]  Agha-Alidol, D.; Oliaiy, P.; Mohsenian, M.; Lamehi-Rachti, M.; Shokouhi, F. Provenance study of ancient Iranian luster pottery using PIXE multivariate statistical analysis. J. Cult. Herit. 2009, 10, 497–492.
[127]  Padeletti, G.; Fermo, P. A scientific approach to the attribution problem of renaissance ceramic productions based on chemical and mineralogical markers. Appl. Phys. A 2010, 100, 771–784, doi:10.1007/s00339-010-5689-x.
[128]  Giussani, B.; Monticelli, D.; Rampazzi, L. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: A review. Anal. Chim. Acta 2009, 635, 6–21, doi:10.1016/j.aca.2008.12.040.
[129]  Zachariadis, G.; Dimitrakoudi, E.; Anthemidis, A.; Stratis, J. Optimized microwave-assisted decomposition method for multi-element analysis of glass standard reference material and ancient glass specimens by inductively coupled plasma atomic emission spectrometry. Talanta 2006, 68, 1448–1456, doi:10.1016/j.talanta.2005.07.062.
[130]  Giakoumaki, A.; Melessanaki, K.; Anglos, D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects. Anal. Bioanal. Chem. 2007, 387, 749–760, doi:10.1007/s00216-006-0908-1.
[131]  Yoon, Y.; Kim, T.; Yang, M.; Lee, K.; Lee, G. Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy. Microchem. J. 2001, 68, 251–256, doi:10.1016/S0026-265X(00)00155-7.
[132]  Clark, R.J.H. Pigment identification by spectroscopic means: An arts/science interface. Compte- Rendus Chim. 2002, 5, 7–20, doi:10.1016/S1631-0748(02)01341-3.
[133]  Colao, F.; Fantoni, R.; Lazic, V.; Spizzichino, V. Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—Application on multi-layered ceramics and copper based alloys. Spectrochim. Acta B 2002, 57, 1219–1234, doi:10.1016/S0584-8547(02)00054-X.
[134]  Dran, J.C; Salomon, J.; Calligaro, T.; Walter, P. Review of accelerator gadgets for art and archaeology. Nuclear Instr. Methods Phys. Res. Sect. B Phys. Inter. Mater. Atom. 2004, 226, 29–37, doi:10.1016/j.nimb.2004.04.176.
[135]  Enguita, O.; Fernandez-Jimenez, M.T.; Garcia, G.; Climent-Font, A.; Calderon, T.; Grime, G.W. The new external microbeam facility at the 5 MV Tandetron accelerator laboratory in Madrid: Beam characterisation and first results. Nuclear Instr. Methods Phys. Res. Sect. B Phys. Inter. Mater. Atom. 2004, 219, 384–388.
[136]  Denker, A.; Hahn, O.; Kanngiesser, B.; Malzer, W.; Merchel, S.; Radtke, M.; Rohrs, S. Chemistry of arts—Non-destructive analysis of artistic and cultural heritage objects. MaterialPrufung 2003, 45, 485–503.
[137]  Mando, P.A.; Fedi, M.E.; Grassi, N. The present role of small particle accelerators for the study of Cultural Heritage. Eur. Phys. J. Plus 2011, 126.
[138]  Salvado, N.; Buti, S.; Tobin, M.J.; Pantos, E.; Prag, A.J.N.W.; Pradell, T. Advantages of the use of SR-FT-IR microspectroscopy: Applications to cultural heritage. Anal. Chem. 2005, 77, 3444–3451, doi:10.1021/ac050126k.
[139]  Janssens, K.; Vittiglio, G.; Deraedt, I.; Aerts, A.; Vekemans, B.; Vincze, L.; Wei, F.; Deryck, I.; Schalm, O.; Adams, F.; et al. Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-ray Spectrom. 2000, 29, 73–91, doi:10.1002/(SICI)1097-4539(200001/02)29:1<73::AID-XRS416>3.0.CO;2-M.
[140]  Creagh, D.C. The characterization of artefacts of cultural heritage significance using physical techniques. Radiat. Phys. Chem. 2005, 74, 426–442, doi:10.1016/j.radphyschem.2005.08.011.
[141]  Moioli, P.; Seccaroni, C. Analysis of art objects using a portable x-ray fluorescence spectrometer. X-ray Spectrom. 2000, 29, 48–52, doi:10.1002/(SICI)1097-4539(200001/02)29:1<48::AID-XRS404>3.0.CO;2-H.
[142]  Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A. Development and optimisation of a portable micro-XRF method for in situ multi-element analysis of ancient ceramics. Talanta 2006, 68, 1692–1699, doi:10.1016/j.talanta.2005.08.051.
[143]  Nuevo, M.J.; Sanchez, A.M. Application of XRF spectrometry to the study of pigments in glazed ceramic pots. Appl. Rad. Isotopes 2011, 69, 574–579, doi:10.1016/j.apradiso.2010.11.025.
[144]  Colomban, P.; Tournié, A.; Maucuer, M.; Meynard, P. On-site Raman and XRF analysis of Japanese/Chinese Bronze/Brass Patina—The search of specific Raman signatures. J. Raman Spectrosc. 2012, 43, 799–808, doi:10.1002/jrs.3095.
[145]  Ferretti, M.; Cristoforetti, G.; Legnaloll, S.; Palleschi, V.; Salvetti, A.; Togrioni, E.; Console, E.; Palaia, P. In situ study of the Porticello Bronzes by portable X-Ray fluorescence and laser induced breakdown spectroscopy. Spectrochim. Acta B Atom. Spectrosc. 2007, 62, 1512–1518, doi:10.1016/j.sab.2007.09.004.
[146]  Brai, M.; Gennaro, G.; Schillaci, T.; Tranchina, L. Double pulse laser induced breakdown spectroscop applied to natural and artificial materials from cultural heritage – A comparison with micro-X-Ray fluorescence analyses. Spectrochim. Acta B Atom. Spectrosc. 2009, 64, 1119–1127, doi:10.1016/j.sab.2009.07.027.
[147]  Turrell, G.; Corset, J. Raman Microscopy-Developments and Applications; Academic Press Ltd: San-Diego, CA, USA, 1976.
[148]  Long, D.A. Raman Spectroscopy; McGraw-Hill International Book Cy: New-York, NY, USA, 1977.
[149]  Gouadec, G.; Colomban, P. Raman study of Nanomaterials: How spectra related to disorder, particle size and mechanical properties. Progr. Cryst. Growth Charact. Mater. 2007, 53, 1–56, doi:10.1016/j.pcrysgrow.2007.01.001.
[150]  Brillouin, L. Diffusion of light and x-rays by a transparent homogeneous body. The influence of thermal agitation. Ann. Phys. 1922, 17, 88–95. ibidem, Regarding the propagation of light in a dispersive medium. , , 1167–1170.
[151]  Smekal, A. The quantum, theory of dispersion. Naturwissenschaften 1923, 11, 873–878. ibidem, Contribution to my work "Remarks on the quantisation of non determined periodic system. , , 58–60, doi:10.1007/BF01576902.
[152]  Cabannes, J. New optical phenomenon; pulsations produced when anisotropic molecules in rotation and vibration diffuse visible and ultra-violet light. Comptes-Rendus Acad. Sci. 1927, 185, 1026–1028.
[153]  Rocard, Y. New diffused radiations. Comptes-Rendus de l’Acad. Sci. 1928, 186, 1107–1115.
[154]  Landsberg, G.; Mandelstam, L. A novel effect of light scattering in crystals. Naturwissenschaften 1928, 16, 557–558. ibidem, Light scattering in crystals, , , 769–780. Pringsheim, P.; Rosen, B.; About the Raman Effect, , , 741–755, doi:10.1007/BF01506807.
[155]  Raman, C.V.; Krishnan, K.S. A new type of secondary radiation. Nature 1928, 121, 501–516, doi:10.1038/121501c0.
[156]  Colomban, P.; Tournié, A. On-site raman identification and dating of ancient/modern stained glasses at the sainte-chapelle. J. Cult. Herit. 2007, 8, 242–256, doi:10.1016/j.culher.2007.04.002.
[157]  Mancini, D.; Tournié, A.; Caggiani, M.-C.; Colomban, P. Testing of Raman spectroscopy as a non-invasive tool for the investigation of glass-protected miniature portraits. J. Raman Spectrosc. 2012, 43, 294–302, doi:10.1002/jrs.3010.
[158]  Colomban, P.; Caggiani, M.-C. Testing of Raman spectroscopy as a non-invasive tool for the investigation of glass-protected pastels. J. Raman Spectrosc. 2011, 42, 790–798, doi:10.1002/jrs.2740.
[159]  Tournié, A.; Prinsloo, L.C.; Paris, C.; Colomban, P.; Smith, B. The first in-situ Raman spectroscopic study of Bushman/San rock art in South Africa; procedures and preliminary results. J. Raman Spectrosc. 2011, 42, 399–406, doi:10.1002/jrs.2682.
[160]  Colomban, P. Polymerisation degree and raman identification of ancient glasses used for jewellery, ceramics enamels and mosaics. J. Non-Crystall. Solids 2003, 323, 180–187, doi:10.1016/S0022-3093(03)00303-X.
[161]  Colomban, P.; Paulsen, O. Raman determination of the structure and composition of glazes. J. Am. Ceram. Soc. 2005, 88, 390–395, doi:10.1111/j.1551-2916.2005.00096.x.
[162]  Colomban, P.; Tournié, A.; Bellot-Gurlet, L. Raman Identification of glassy silicates used in ceramic, glass and jewellry: A tentative differentiation guide. J. Raman Spectrosc. 2006, 37, 841–852, doi:10.1002/jrs.1515.
[163]  Colomban, P. On-site Raman identification and dating of ancient glasses: Procedures and tools. J. Cult. Herit. 2008, 9 Suppl., e55–e60, doi:10.1016/j.culher.2008.06.005.
[164]  Colomban, P.; Prinsloo, L. Optical Spectroscopy of Silicates and Glasses. In Spectroscopic Properties of Inorganic and Organometallic Compounds; Yarwood, J., Douthwaite, R., Duckett, S.B., Eds.; RSC Publishing: Cambridge, UK, The Royal Society of Chemistry, 2009; pp. 128–149.
[165]  Bell, I.M.; Clark, R.J.H.; Gibbs, P.J. Raman spectroscopic library of natural an synthetic pigments (pre-~1850 AD). Spectrochim. Acta Part A 1997, 53, 2159–2179, doi:10.1016/S1386-1425(97)00140-6.
[166]  Griffith, W.P. Raman Spectroscopy of Terrestrial Minerals. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals; Karr, C., Ed.; Academic Press: New York, NY, USA, 1975. Chapter 12.
[167]  Nakamoto, K. Infrared & Raman Spectra of Inorganic and Coordination Compounds: Theory and Application in Inorganic Chemistry; J. Wiley & Sons: Chichester, UK, 1997.
[168]  Maestrati, R. Contribution à l’Edification du Catalogue Raman des Gemmes; Dipl?me de Gemmologie: Université de Nantes, Nantes, France, 1989.
[169]  Pinet, M.; Smith, D.C.; Lasnier, B. Utilité de la microsonde Raman pour l’identification non-destructive des gemmes, La Microsonde Raman en Géologie. N° Hors-Série, Revue de Gemmologie, Paris, UK 1992, Juin, 11–30.
[170]  Information on mineralsAvailable online: (accessed on 4th February 2012); (accessed on 4th February 2012); ; (accessed on 4th February 2012); ; (accessed on 4th February 2012); Information on pigments. Available online: (accessed on 4th February 2012); (accessed on 4th February 2012).
[171]  Clark, R.J.H. The scientific investigation of artwork and archaeological artefacts: Raman microscopy as a structural, analytical and forensic tool. Appl. Phys. A – Mater. Sci. & Process. 2007, 89, 833–840.
[172]  Burgio, L.; Clark, R.J.H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta Part A 2001, 57, 1491–1521, doi:10.1016/S1386-1425(00)00495-9.
[173]  Williams, R.S. On-site non-destructive ID-IR spectroscopy of plastic in museum objects using a portable FT-IR Spectrometer with fibre-optic probe, materials issues in art & archaeology. MRS Proc. 1997, 462, 25–30, doi:10.1557/PROC-462-25.
[174]  Logan, L.L.; Hunt, G.R.; Salisbury, J.W. The Use of Mid-infrared Spectroscopy in Remote Sensing of Space Targets. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals; Karr, C., Jr., Ed.; Academic Press: New York, NY, USA, 1975; pp. 117–142.
[175]  Adams, J.B. Interpretation of Visible and Near Infrared Diffuse Reflectance Spectra of Pyroxenes and other Rock Forming Minerals. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals; Karr, C., Jr., Ed.; Academic Press: New York, NY, USA, 1975; pp. 91–116.
[176]  Munier, P. Technologie des Fa?ences; Gauthier-Villars: Paris, France, 1957.
[177]  Liem, N.Q.; Colomban, P.; Sagon, G.; Tinh, H.X.; Hoanh, T.B. Microstructure, composition and processing of the 15th century vietnamese porcelains and celadons. J. Cult. Herit. 2003, 4, 187–197.
[178]  Liem, N.Q.; Thanh, N.T.; Colomban, P. Reliability of raman microspectrometry in analysis of ancient ceramics: The case of ancient vietnamese porcelains and celadon glazes. J. Raman Spectrosc. 2002, 33, 287–294, doi:10.1002/jrs.854.
[179]  Colomban, P.; Milande, V. On Site Analysis of the earliest known Meissen Porcelain and Stoneware. J. Raman Spectrosc. 2006, 37, 606–613, doi:10.1002/jrs.1494.
[180]  Ricciardi, P.; Colomban, P.; Tournié, A.; Macchiarola, M.; Ayed, N. A non-invasive study of Roman Age mosaic glass tesserae by means of Raman spectroscopy. J. Archaeol. Sci. 2009, 36, 2551–2559, doi:10.1016/j.jas.2009.07.008.
[181]  Prinsloo, L.C.; Tournié, A.; Colomban, P. A Raman spectroscopic study of the glass trade beads excavated at Mapungubwe hill and K2, two important archaeological sites in southern Africa, raises questions about the last occupation date of the hill. J. Archaeol. Sci. 2011, 38, 3264–3277, doi:10.1016/j.jas.2011.07.004.
[182]  Prinsloo, L.C.; Tournié, A.; Colomban, P. Raman classification of the glass beads excavated on Mapungubwe hill and K2, two archaeological sites in South Africa. J. Raman Spectrosc. 2012, 44, 532–542.
[183]  Andrikopoulos, K.S.; Daniilia, S.; Roussel, B.; Janssens, K. In vitro validation of a mobile Raman-XRF microanalytical instrument’s capabilities on the diagnosis of Byzantine icons. J. Raman Spectrosc. 2006, 37, 1026–1034, doi:10.1002/jrs.1612.
[184]  Baraldi, P.; Fagnano, C.; Bensi, P. Raman study of a “Tabula Colorum Physiologica” in a 1686 peinted journal. J. Raman Spectrosc. 2006, 37, 1104–1110, doi:10.1002/jrs.1602.
[185]  Benquerenca, M.-J.; Mendes, N.F.C.; Castelluci, E.; Gaspar, V.M.F.; Gil, F.P.S.C. Micro-Raman spectroscopy analysis of 16th century Portuguese Ferreirim Masters oil paintings. J. Raman Spectrosc. 2009, 40, 2135–2143, doi:10.1002/jrs.2383.
[186]  De Waal, D. Micro-Raman and portable Raman spectroscopic investigation of blue pigments in selected Delft plates (17–20th Century). J. Raman Spectrosc. 2009, 40, 2162–2170, doi:10.1002/jrs.2389.
[187]  Bouchard, M.; Gambardella, A. Raman microscopy study of synthetic cobalt blue spinels used in the field of art. J. Raman Spectrosc. 2009, 41, 1477–1485, doi:10.1002/jrs.2645.
[188]  Colomban, P.; Sagon, G.; Huy, L.Q.; Liem, N.Q.; Mazerolles, L. Vietnames (15th century) Blue-and-White Tam Tai and Lustre Porcelains/Stonewares: Glaze composition and decoration techniques. Archaeometry 2004, 46, 125–136, doi:10.1111/j.1475-4754.2004.00148.x.
[189]  Colomban, P. Les Routes du Lapis lazuli. Taoci (Editions SFECO-Findalkly, Suilly-la-Tour, France) 2005, 4, 145–154.
[190]  Colomban, P. Lapis lazuli as unexpected pigment in Iranian Lajvardina ceramics. J. Raman Spectrosc. 2003, 34, 420–423, doi:10.1002/jrs.1014.
[191]  Buffon (Comte de). Histoire Naturelle des Minéraux, Tome Septième; Imprimerie Royale: Paris, France, 1787; pp. 251–259.
[192]  Lo Giudice, A.; Re, A.; Calusi, S.; Giuntini, L.; Massi, M.; Olivero, P.; Pratesi, G.; Albonico, M.; Conz, E. Multitechnique characterization of lapis lazuli for provenance study. Anal. Bioanal. Chem. 2009, 395, 2211–2217, doi:10.1007/s00216-009-3039-7.
[193]  Clark, R.J.H.; Curri, M.L.; Laganara, C. Raman microscopy: The identification of lapis lazuli on medieval pottery fragments from the south of Italy. Spectrochim. Acta Part A 1997, 53, 597–603, doi:10.1016/S1386-1425(96)01768-4.
[194]  Catalano, I.M.; Genga, A.; Laganara, C.; Laviano, R.; Mangone, A.; Marano, D.; Traini, A. Lapis lazuli usage for blue decoration of polychrome painted glazed pottery: A recurrent technology during the Middle Ages in Apulia (Southern Italy). J. Archaeol. Sci. 2007, 34, 503–511, doi:10.1016/j.jas.2006.05.010.
[195]  Mangone, A.; Caggiani, M.C.; Giannossa, L.C.; Laviano, R.; Mutino, S.; Sabbatini, L.; Traini, A. Islamic Gilded and Enamelled Glasses from Melfi (Southern Italy): An Archaeometric Study. In Proceedings of the 5th International Congress “Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin”, Istanbul, Turkey, 22–25 November 2011.
[196]  Ward, R. Gilded and Enamelled Glass from the Middle East; British Museum Press: London, UK, 1998.
[197]  Freestone, I.C.; Stapleton, C.P. Composition and Technology of Islamic enamelled glass of the 13–14th centuries (ch 24). In Gilded and Enamelled Glass from the Middle East; Ward, R., Ed.; British Museum Press: London, UK, 1998.
[198]  Caggiani, M.C.; Colomban, P.; Mangone, A.; Cambon, P. Mobile Raman spectroscopy analysis of ancient enamelled glass masterpieces. Analyst. submitted .
[199]  Clark, R.J.H. Raman microscopy as structural and analytical tool in the field of art and archaeology. J. Mol. Struct. 2007, 834, 74–80, doi:10.1016/j.molstruc.2007.01.031.
[200]  Perreira, M.; de Lacerda-Aroso, T.; Gomes, M.J.M.; Mata, A.; Alves, L.C.; Colomban, P. Ancient portuguese ceramic wall tiles (? Ajulejos ?): Characterization of the glaze and ceramic pigments. J. Nano Res. 2009, 8, 79–88, doi:10.4028/www.scientific.net/JNanoR.8.79.
[201]  Colomban, P.; Schreiber, H. Raman signature modification induced by copper nanoparticles in silicate glass. J. Raman Spectrosc. 2005, 36, 884–890, doi:10.1002/jrs.1379.
[202]  Colomban, P. Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites. Ceramics Int. 1989, 15, 23–50, doi:10.1016/0272-8842(89)90005-9.
[203]  Colomban, P.; March, G.; Mazerolles, L.; Karmous, T.; Ayed, N.; Ennabli, A.; Slim, H. Raman identification of materials used for jewelry and mosaic in ifriqiya. J. Raman Spectrosc. 2003, 34, 205–215, doi:10.1002/jrs.977.
[204]  Bénard, J.; Dragesco, B. Bernard Perrot et les verreries royales du Duché d’Orléans, 1662–1754; Editions des amis du musée d’Orléans: Orléans, France, 1989; pp. 55–66.
[205]  Barrelet, J. Le Verre en France. Cahiers de la Céramique, du Verre et des Arts du feu 1964, 36, 254–270.
[206]  Vaughan, A. Raman nanotechnology—The lycurgus cup. IEE Electr. Insul. Mag. 2008, 24, 4–8, doi:10.1109/MEI.2008.4665344.
[207]  Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The lycurgus cup—A Roman nanotechnology. Gold Bull. 2007, 40, 270–277, doi:10.1007/BF03215599.
[208]  De Lucas, M.C.; Moncada, F.; Rosen, J. Micro-Raman study of red decorations in French faiences of the 18th and 19th centuries. J. Raman Spectrosc. 2006, 37, 1154–1159, doi:10.1002/jrs.1596.
[209]  Caggiani, M.C.; Colomban, P. Raman identification of strongly absorbing phases: The ceramic black pigments. J. Raman Spectrosc. 2011, 42, 839–843, doi:10.1002/jrs.2777.
[210]  Girel, J. Les noirs des Song: hypothèses et expériences. Lett. SFECO 2002, 6, 31–35. Available online: http://www.ladir.cnrs.fr/pages/colomban/SF6imagine.pdf (accessed on 4th February 2013).
[211]  Perez, J.M.; Esteve-Tebar, R. Pigment identification in Greek pottery by Raman microspectroscopy. Archaeometry 2004, 46, 607–614, doi:10.1111/j.1475-4754.2004.00176.x.
[212]  Mirti, P.; Gulmini, M.; Perardi, A.; Davit, P.; Elia, D. Technology of production of red figure pottery from Attic and southern Italian workshops. Anal. Bioanal. Chem. 2004, 380, 712–718, doi:10.1007/s00216-004-2779-7.
[213]  Mangone, A.; de Benedetto, G.E.; Fico, D.; Giannossa, L.C.; Laviano, R.; Sabbatini, L.; van der Werf, I.D.; Traini, A. A multianalytical study of archaeological faience from the Vesuvian area as a valid tool to investigate provenance and technological features. New J. Chem. 2011, 35, 2860–2868, doi:10.1039/c1nj20626e.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133