Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2- cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.
Buckingham, B.A.; Beck, R.W.; Tamborlane, W.V.; Boland, E.A.; Chase, H.P.; Tansey, M.J.; Mauras, N.; Weinzimmer, S.A.; Ruedy, K.J.; Booth, A.D.; Kollman, C.; Diabetes Research in Children Network (DirecNet) Study Group. The accuracy of the CGMS in children with type 1 diabetes: Results of the diabetes research in children network (DirecNet) accuracy study. Diabetes Technol. Ther. 2003, 5, 781–789, doi:10.1089/152091503322526987.
[3]
Facchinetti, A.; Sparacino, G.; Guerra, S.; Lujif, Y.M.; DeVries, J.H.; Mader, J.K.; Ellmerer, M.; Benesch, C.; Heinemann, L.; Bruttomesso, D.; Avogaro, A.; Cobelli, C. Real-time improvement of continuous glucose monitoring accuracy. Diabetes Care 2013, 36, 793–800, doi:10.2337/dc12-0736.
[4]
Smith, J.L. The Pursuit of Noninvasive Glucose: Hunting the Deceitful Turkey. Available online: http://www.mendosa.com/noninvasive.glucose.pdf (accessed on 24 October 2013).
[5]
Yoo, E.-H.; Lee, S.-Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576, doi:10.3390/s100504558.
[6]
Mansouri, S.; Schultz, J.S. A miniature optical glucose sensor based on affinity binding. Biotechnology 1984, 2, 885–890, doi:10.1038/nbt1084-885.
[7]
De Marcos, S.; Galindo, J.; Sierra, J.F.; Galban, J.; Castillo, J.R. An optical glucose biosensor based on derived glucose oxidase immobilised onto a sol-gel matrix. Sens. Actuator. B 1999, 57, 227–232.
[8]
D’Auria, S.; Di Cesare, N.; Gryczynski, Z.; Rossi, M.; Lakowicz, J.R. A thermophilic apoglucose dehydrogenase as a nonconsuming glucose sensor. Biochem. Biophys. Res. Commun. 2000, 274, 727–731, doi:10.1006/bbrc.2000.3172.
[9]
Maity, H.; Maity, N.C.; Jarori, G.K. Time-resolved fluorescence of tryptophans in yeast hexokinase-PI: Effect of subunit dimerization and ligand binding. J. Photochem. Photobiol. B 2000, 55, 20–26, doi:10.1016/S1011-1344(00)00019-1.
[10]
Gilardi, G.; Mei, G.; Rosato, N.; Agro, A.F.; Cass, A.E.G. Spectroscopic properties of an engineered maltose binding protein. Protein Eng. 1997, 10, 479–486, doi:10.1093/protein/10.5.479.
[11]
Hall, D.G. Boronic Acids: Preparation, Application in Organic Synthesis and Medicine; Wiley-VCH: Berlin, Germany, 2005.
Reach, G.; Wilson, G.S. Can continuous glucose monitoring be used for the treatment of diabetes? Anal. Chem. 1992, 64, 381A–386A.
[14]
Wickramasinghe, Y.; Yang, Y.; Spencer, S.A. Current problems and potential techniques in in vivo glucose monitoring. J. Fluoresc. 2004, 14, 513–520, doi:10.1023/B:JOFL.0000039339.36839.19.
[15]
Wilson, G.S.; Gifford, R. Biosensors for real-time measurements. Biosens. Bioelectron. 2005, 20, 2388–2403, doi:10.1016/j.bios.2004.12.003.
[16]
Vadgama, P.; Desai, M.; Crump, P. Electrochemical transducers for in vivo monitoring. Electroanalysis 1991, 3, 597–606, doi:10.1002/elan.1140030703.
[17]
LeBlanc, J.M.; Haas, C.E.; Vicente, G.; Colon, L.A. Evaluation of lacrimal fluid as an alternative for monitoring glucose in critically ill patients. Intensive Care Med. 2005, 31, 1442–1445, doi:10.1007/s00134-005-2747-5.
[18]
Baca, J.T.; Taormina, C.R.; Feingold, E.; Finegold, D.N.; Grabowski, J.J.; Asher, S.A. Mass spectral determination of fasting tear glucose concentrations in nondiabetic volunteers. Clin. Chem. 2007, 53, 1370–1372, doi:10.1373/clinchem.2006.078543.
[19]
Baca, J.T.; Finegold, D.N.; Asher, S.A. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul. Surf. 2007, 5, 280–293, doi:10.1016/S1542-0124(12)70094-0.
[20]
Yang, W.; Gao, X.; Wang, B. Boronic acids as potential pharmaceutical agents. Med. Res. Rev. 2003, 23, 346–368.
[21]
Springsteen, G.; Wang, B. A detailed examination of boronic acid-diol complexation. Tetrahedron 2002, 58, 5291–5300, doi:10.1016/S0040-4020(02)00489-1.
[22]
Cao, H.; Heagy, M.D. Fluorescent chemosensors for carbohydrates: A decade’s worth of bright spies for saccharides in review. J. Fluoresc. 2004, 14, 569–584, doi:10.1023/B:JOFL.0000039344.34642.4c.
[23]
James, T.D.; Phillips, M.D.; Shinkai, S. Boronic Acids in Saccharide Recognition; Royal Society of Chemistry: London, UK, 2006.
Geddes, C.D. Reviews in Fluorescence; Springer-Verlag: New York, NY, USA, 2008.
[26]
De Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; McCoy, C.P.; Maxwell, P.R.S.; Rademacher, J.T.; Rice, T.E. Photoionic devices with receptor-functionalized fluorophores. Pure Appl. Chem. 1996, 68, 1443–1448, doi:10.1351/pac199668071443.
[27]
De Silva, A.P.; Gunaratne, H.Q.N.; McCoy, C.P. Molecular photoionic and logic gates with bright fluorescence and off-on digital action. J. Am. Chem. Soc. 1997, 119, 7891–7892.
[28]
De Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566.
[29]
James, T.D.; Sandanayake, K.; Shinkai, S. Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. J. Chem. Soc. Chem. Commun. 1994, 47, 477–478.
[30]
James, T.D.; Sandanayake, K.R.A.S.; Iguchi, R.; Shinkai, S. Novel saccharide photoinduced electron transfer sensors based on the interaction between boronic acid and amine. J. Am. Chem. Soc. 1995, 117, 8982–8987, doi:10.1021/ja00140a013.
[31]
Arimori, S.; Bell, M.L.; Oh, C.S.; Frimat, K.A.; James, T.D. Modular fluorescence sensors for saccharides. Chem. Commun. 2001, 183, 1836–1837.
[32]
Arimori, S.; Bell, M.L.; Oh, C.S.; Frimat, K.A.; James, T.D. Modular fluorescence sensors for saccharides. J. Chem. Soc. Perkin Trans. 1 2002, 803–808, doi:10.1039/B108998F.
[33]
Arimori, S.; Bell, M.L.; Oh, C.S.; James, T.D. A modular fluorescence intramolecular energy transfer saccharide sensor. Org. Lett. 2002, 4, 4249–4251, doi:10.1021/ol026802b.
[34]
Zhao, J.; Davidson, M.G.; Mahon, M.F.; Kociak-K?hn, G.; James, T.D. An enantioselective fluorescent sensor for sugar acids. J. Am. Chem. Soc. 2004, 126, 16179–16186, doi:10.1021/ja046289s.
[35]
Zhao, J.; Fyles, T.M.; James, T.D. Chiral binol-bisboronic acid as fluorescence sensor for sugar acids. Angew. Chem. Int. Ed. Engl. 2004, 43, 3461–3464, doi:10.1002/anie.200454033.
[36]
Liang, X.; James, T.D.; Zhao, J. 6,6′-Bis-substituted binol boronic acids as enantioselective and chemoselective fluorescent chemosensors for d-sorbitol. Tetrahedron 2008, 64, 1309–1315, doi:10.1016/j.tet.2007.11.061.
[37]
Xing, Z.; Wang, H.-C.; Cheng, Y.; Zhu, C.; James, T.D.; Zhao, J. Selective saccharide recognition using modular diboronic acid fluorescent sensors. Eur. J. Org. Chem. 2012, 1223–1229, doi:10.1002/ejoc.201101633.
[38]
Larkin, J.D.; Fossey, J.S.; James, T.D.; Brooks, B.R.; Bock, C.W. A computational investigation of the nitrogen-boron interaction in o-(N,N-dialkylaminomethyl)-arylboronate systems. J. Phys. Chem. A 2010, 114, 12531–12539, doi:10.1021/jp1087674.
DiCesare, N.; Lakowicz, J.R. Fluorescent probe for monosaccharides based on a functionalized boron-dipyrromethene with a boronic acid group. Tetrahedron Lett. 2001, 42, 9105–9108, doi:10.1016/S0040-4039(01)02022-6.
[41]
Hansen, J.S.; Petersen, J.F.; Hoeg-Jensen, T.; Christensen, J.B. Buffer and sugar concentration dependent fluorescence response of a BODIPY-based aryl monoboronic acid sensor. Tetrahedron Lett. 2012, 53, 5852–5855, doi:10.1016/j.tetlet.2012.08.066.
[42]
Hansen, J.S.; Ficker, M.; Petersen, J.F.; Christensen, J.B.; Hoeg-Jensen, T. Ortho-substituted fluorescent aryl monoboronic acid displays physiological binding of d-glucose. Tetrahedron Lett. 2013, 54, 1849–1852, doi:10.1016/j.tetlet.2013.01.101.
[43]
Van Duin, M.; Peters, J.A.; Kieboom, A.P.G.; van Bekkum, H. Studies on borate esters 1: The pH dependence of the stability of esters of boric acid and in aqueous media as studied by 11B-NMR. Tetrahedron 1984, 40, 2901–2911, doi:10.1016/S0040-4020(01)91300-6.
[44]
Hansen, J.S.; Christensen, J.B.; Solling, T.I.; Jakobsen, P.; Hoeg-Jensen, T. Ortho-substituted aryl monoboronic acids have improved selectivity for d-glucose relative to d-fructose and l-lactate. Tetrahedron 2011, 67, 1334–1340.
[45]
Camara, J.N.; Suri, J.T.; Cappucio, F.E.; Wessling, R.A.; Singaram, B. Boronic acid substituted viologen based optical sugar sensors: Modulated quenching with viologen as a method for monosaccharide detection. Tetrahedron Lett. 2002, 43, 1139–1141, doi:10.1016/S0040-4039(01)02366-8.
[46]
Cordes, D.B.; Gamsey, S.; Sharrett, Z.; Miller, A.; Thoniyot, P.; Wessling, R.A.; Singaram, B. The interaction of boronic acid-substituted viologens with pyranine: The effects of quencher charge on fluorescence quenching and glucose response. Langmuir 2005, 21, 6540–6547, doi:10.1021/la050219x.
[47]
Cordes, D.B.; Miller, A.; Gamsey, S.; Singaram, B. Simultaneous use of multiple fluorescent reporter dyes for glucose sensing in aqueous solution. Anal. Bioanal. Chem. 2007, 387, 2767–2773, doi:10.1007/s00216-007-1128-z.
[48]
Sharrett, Z.; Gamsey, S.; Levine, P.; Cunningham-Bryant, D.; Vilozny, B.; Schiller, A.; Wessling, R.A.; Singaram, B. Boronic acid-appended bis-viologens as a new family of viologens for glucose sensing. Tetrahedron Lett. 2008, 49, 300–304, doi:10.1016/j.tetlet.2007.11.053.
[49]
Thoniyot, P.; Cappucio, F.E.; Gamsey, S.; Cordes, D.B.; Wessling, R.A.; Singaram, B. Continuous glucose detection with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing. Diabetes Technol. Ther. 2006, 8, 279–287, doi:10.1089/dia.2006.8.279.
[50]
Gamsey, S.; Suri, J.T.; Wessling, R.A.; Singaram, B. Continuous glucose sensing using boronic acid-substituted viologens in fluorescent hydrogels: Linker effects and extension to fiber optics. Langmuir 2006, 22, 9067–9074, doi:10.1021/la0617053.
[51]
Sharrett, Z.; Gamsey, S.; Fat, J.; Cunningham-Bryant, D.; Wessling, R.A.; Singaram, B. The effect of boronic acid acidity on performance of viologen-based boronic acids in a two-component optical glucose-sensing system. Tetrahedron Lett. 2007, 48, 5125–5129, doi:10.1016/j.tetlet.2007.05.075.
[52]
Wang, Z.; Lei, H.; Zhou, C.; Liang, F.; Feng, L. Optical probe for d-glucose based on cationic polymer quencher/receptor and anionic dye in aqueous solution. Sens. Actuator. B 2012, 163, 202–206, doi:10.1016/j.snb.2012.01.036.
[53]
Feng, L.; Wang, Y.; Liang, F.; Wang, X.; Zhang, L. Detection of glucose based on reversible “on-off” fluorescence systems in aqueous solution. Sens. Actuator. B 2011, 156, 499–503, doi:10.1016/j.snb.2011.04.051.
[54]
Feng, L.; Wang, Y.; Liang, F.; Ming, X.; Wang, X. Highly selective recognition of monosaccharides based on two-component system in aqueous solution. Tetrahedron 2011, 67, 3175–3180.
[55]
Feng, L.; Liang, F.; Wang, Y.; Wang, X. A facile probe for dfructose with fluorescence “on-off-on” switch ensemble. Sens. Actuator. B 2012, 173, 575–579.
[56]
Wu, X.; Lin, L.-R.; Huang, Y.-J.; Li, Z.; Jiang, Y.-B. A 2:2 stilbeneboronic acid-γ-cyclodextrin fluorescent ensemble highly selective for glucose in aqueous solutions. Chem. Commun. 2012, 48, 4362–4364, doi:10.1039/c2cc30463e.
[57]
Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J.Z.; Tang, B.Z. Specific detection of d-glucose by a tetraphenylene-based fluorescent sensor. J. Am. Chem. Soc. 2011, 133, 660–663, doi:10.1021/ja107086y.
[58]
Saito, S.; Massie, T.L.; Maeda, T.; Nakazumi, H.; Colyer, C.L. A long-wavelength fluorescent squarylium cyanine dye possessing boronic acid for sensing monosaccharides and glycoproteins with high enhancement in aqueous solution. Sensors 2012, 12, 5420–5431, doi:10.3390/s120505420.
[59]
Jin, S.; Zhu, C.; Li, M.; Wang, B. Identification of the first fluorescent a-amidoboronic acid that change fluorescent properties upon sugar binding. Bioorg. Med. Chem. Lett. 2009, 19, 1596–1599, doi:10.1016/j.bmcl.2009.02.011.
[60]
Kumai, M.; Kozuka, S.; Samizo, M.; Hashimoto, T.; Suzuki, I.; Hayashita, T. Glucose recognition by a supramolecular complex of boronic acid fluorophore with boronic acid-modified cyclodextrin in water. Anal. Sci. 2012, 28, 121–126, doi:10.2116/analsci.28.121.
[61]
Guzow, K.; Jazdzewska, D.; Wiczk, W. 3-[2-(Boronophenyl)benzoxazol-5-yl]alanine derivatives as fluorescent monosaccharide sensors. Tetrahedron 2012, 68, 9240–9248, doi:10.1016/j.tet.2012.08.085.
[62]
Wannajuk, K.; Jamkatoke, M.; Tuntulani, T.; Tomapatanaget, B. Highly specific-glucose fluorescence sensing based on boronic anthraquinone derivatives via the GOx enzymatic reaction. Tetrahedron 2012, 68, 8899–8904, doi:10.1016/j.tet.2012.08.037.
[63]
Ni, N.; Laughlin, S.; Wang, Y.; Feng, Y.; Zheng, Y.; Wang, B. Probing the general time scale question of boronic acid binding with sugars in aqueous solution at physiological pH. Bioorg. Med. Chem. 2012, 20, 2957–2961, doi:10.1016/j.bmc.2012.03.014.
[64]
Yum, K.; Ahn, J.-H.; McNicholas, T.P.; Barone, P.W.; Mu, B.; Kim, J.-H.; Jain, R.M.; Strano, M.S. Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose. ACS Nano 2012, 6, 819–830.
[65]
Mu, B.; McNicholas, T.P.; Zhang, J.; Hilmer, A.J.; Jin, Z.; Reuel, N.F.; Kim, J.-H.; Yum, K.; Strano, M.S. A structure-function relationship for the optical modulation of phenyl boronic acid-grafted, polyethylene glycol-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 17620–17627, doi:10.1021/ja307085h.
[66]
Li, Y.-H.; Zhang, L.; Huang, J.; Liang, R.-P.; Qiu, J.-D. Fluorescent graphene quantum dots with a boronic acid appened bipyridinium salt to sense monosaccharides in aqueous solution. Chem. Commun. 2013, 5180–5182, doi:10.1039/C3CC40652K.
[67]
Manju, S.; Sreenivasan, K. Detection of glucose in synthetic tear fluid using dually functionalized gold nanoparticles. Talanta 2011, 85, 2643–2649, doi:10.1016/j.talanta.2011.08.033.
[68]
Huang, Y.-J.; Ouyang, W.-J.; Wu, X.; Li, Z.; Fossey, J.S.; James, T.D.; Jiang, Y.-B. Glucose sensing via aggregation and the use of “knock-out” binding to improve selectivity. J. Am. Chem. Soc. 2013, 135, 1700–1703, doi:10.1021/ja311442x.
[69]
Huang, Y.-J.; Jiang, Y.-B.; Fossey, J.S.; James, T.D.; Marken, F. Assembly of N-hexadecyl-pyridinium-4-boronic acid hexafluorophosphate monolayer films with catechol sensing selectivity. J. Mater. Chem. 2010, 20, 8305–8310, doi:10.1039/c0jm01510e.
[70]
Huang, Y.-J.; Jiang, Y.-B.; Bull, S.D.; Fossey, J.S.; James, T.D. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker. Chem. Commun. 2010, 46, 8180–8182, doi:10.1039/c0cc03099f.
[71]
Ngamdee, K.; Noipa, T.; Martwiset, S.; Tuntulani, T.; Ngeontae, W. Enhancement of sensitivity of glucose sensors from alizarin-boronic acid adducts in aqueous micelles. Sens. Actuator. B 2011, 160, 129–138, doi:10.1016/j.snb.2011.07.023.
[72]
Savsunenko, O.; Matondo, H.; Franceschi-Messant, S.; Perez, E.; Popov, A.F.; Rico-Lattes, I.; Lattes, A.; Karpichev, Y. Functionalized vesicles based on amphiphilic boronic acids: A system for recognizing biologically important polyols. Langmuir 2013, 29, 3207–3213, doi:10.1021/la304751p.
[73]
Feng, L.; Yin, N.; Wang, X.; Wang, Z. Fluorescence probe for monosaccharide based on anionic polyelectrolyte and cationic pyridine quaternary ammonium salt. Sens. Actuator. B 2013, 181, 730–734, doi:10.1016/j.snb.2013.02.005.
[74]
Li, Y.; Zhou, S. A simple method to fabricate fluorescent glucose sensor based on dye-complexed microgels. Sens. Actuator. B 2013, 177, 792–799, doi:10.1016/j.snb.2012.11.108.
[75]
Heo, Y.J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. PNAS 2011, 108, 13399–13403, doi:10.1073/pnas.1104954108.