Ionic liquids are organic salts with melting points typically below ambient or reaction temperature. The unique combination of physical properties of ionic liquids, such as lack of measurable vapor pressure, high thermal and chemical stability, make them ideal to be used as reusable homogenous support for catalysts. In addition, the solubility of ionic liquids in various reaction media can be controlled and easily fine-tuned by modification of the structures of their cations and anions. As a result, ionic liquid immobilized organocatalysts are very effective in aqueous media and can be separated easily from organic solvents, as well as aqueous phases by simply adjusting the polarity of the media. Ionic liquid immobilized organocatalysts are not only very versatile compounds that are effective catalysts for a wide spectrum of reactions, but are also environmentally friendly and recyclable organocatalysts. Herein, we provide a summary of the past decade in the area of asymmetric catalysis in aqueous media for a wide variety of reactions in which ionic liquid and related ammonium salt immobilized organocatalysts are used.
References
[1]
Dalko, P.I.; Moisan, L. In the Golden Age of Organocatalysis. Angew. Chem. Int. Ed. 2004, 43, 5138–5175, doi:10.1002/anie.200400650.
[2]
List, B. The ying and yang of asymmetric aminocatalysis. Chem. Commun. 2006, 819–824, doi:10.1039/b514296m.
[3]
Dondoni, A.; Massi, A. Asymmetric Organocatalysis: From Infancy to Adolescence. Angew. Chem. Int. Ed. 2008, 47, 4638–4660, doi:10.1002/anie.200704684.
[4]
MacMillan, D.W.C. The Advent and Development of Organocatalysis. Nature 2008, 455, 304–308, doi:10.1038/nature07367.
Jacobsen, E.N.; MacMillan, D.W.C. Organocatalysis. Proc. Natl. Acad. Sci. USA 2010, 107, 20618–20619, doi:10.1073/pnas.1016087107.
[7]
Hernandez, J.G.; Juaristi, E. Recent efforts directed to the development of more sustainable asymmetric organocatalysis. Chem. Commun. 2012, 48, 5396–5409, doi:10.1039/c2cc30951c.
[8]
Asymmetric Organocatalysis; American Chemical Society: Washington, DC, USA, 2004; pp. 487–631.
[9]
Organic Catalysis; Wiley-VCH: Weinheim, Germany, 2004; pp. 1007–1249.
[10]
Organocatalysis; American Chemical Society: Washington, DC, USA, 2007; pp. 5413–5883.
[11]
Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084, doi:10.1021/cr980032t.
[12]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. 2001, 2399–2407, doi:10.1039/b107270f.
Weingaertner, H. Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angew. Chem. Int. Ed. 2008, 47, 654–670, doi:10.1002/anie.200604951.
[15]
Lee, J.W.; Shin, J.Y.; Chun, Y.S.; Jang, H.B.; Song, C.E.; Lee, S.-G. Toward Understanding the Origin of Positive Effects of Ionic Liquids on Catalysis: Formation of More Reactive Catalysts and Stabilization of Reactive Intermediates and Transition States in Ionic Liquids. Acc. Chem. Res. 2010, 43, 985–994, doi:10.1021/ar9002202.
[16]
Dupont, J. From Molten Salts to Ionic Liquids: A “Nano” Journey. Acc. Chem. Res. 2011, 44, 1223–1231, doi:10.1021/ar2000937.
[17]
Walden, P. Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. (St. Petersburg.) 1914, 405–422.
[18]
Chum, H.L.; Koch, V.R.; Miller, L.L.; Osteryoung, R.A. An electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc. 1975, 97, 3264–3265, doi:10.1021/ja00844a081.
[19]
Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis. Inorg. Chem. 1982, 21, 1263–1264, doi:10.1021/ic00133a078.
[20]
Diaw, M.; Chagnes, A.; Carre, B.; Willmann, P.; Lemordant, D. Mixed ionic liquid as electrolyte for lithium batteries. J. Power Sour. 2005, 146, 682–684, doi:10.1016/j.jpowsour.2005.03.068.
[21]
Chiappe, C.; Pieraccini, D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem. 2005, 18, 275–297, doi:10.1002/poc.863.
[22]
Song, C.E. Enantioselective chemo- and bio-catalysis in ionic liquids. Chem. Commun. 2004, 1033–1043, doi:10.1039/b309027b.
[23]
Lee, S. Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem. Commun. 2006, 1049–1063, doi:10.1039/b514140k.
[24]
Parvulescu, V.I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2615–2665, doi:10.1021/cr050948h.
Hallett, J.P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508–3576, doi:10.1021/cr1003248.
[27]
Hunt, P.A.; Gould, I.R.; Kirchner, B. The Structure of Imidazolium-Based Ionic Liquids: Insights from Ion-Pair Interactions. Aust. J. Chem. 2007, 60, 9–14, doi:10.1071/CH06301.
[28]
Wilkes, J.S. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A 2004, 214, 11–17, doi:10.1016/j.molcata.2003.11.029.
[29]
Anderson, J.L.; Ding, J.; Welton, T.; Armstrong, D.W. Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 2002, 124, 14247–14254, doi:10.1021/ja028156h.
[30]
Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164, doi:10.1039/b103275p.
[31]
Miao, W.; Chan, T.H. Ionic-Liquid-Supported Synthesis:? A Novel Liquid-Phase Strategy for Organic Synthesis. Acc. Chem. Res. 2006, 39, 897–908, doi:10.1021/ar030252f.
[32]
Handy, S.T.; Okello, M. Homogeneous Supported Synthesis Using Ionic Liquid Supports: Tunable Separation Properties. J. Org. Chem. 2005, 70, 2874–2877, doi:10.1021/jo047807k.
[33]
Breslow, R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res. 1991, 24, 159–164, doi:10.1021/ar00006a001.
Li, C.-J. Organic reactions in aqueous media with a focus on C-C bond formations: A decade update. Chem. Rev. 2005, 105, 3095–3165, doi:10.1021/cr030009u.
[36]
Li, C.-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev. 2006, 35, 68–82.
[37]
Brogan, A.P.; Dickerson, T.J.; Janda, K.D. Enamine-Based Aldol Organocatalysis in Water: Are They Really “All Wet”? Angew. Chem. Int. Ed. 2006, 45, 8100–8102, doi:10.1002/anie.200601392.
[38]
Hayashi, Y. In Water or in the Presence of Water. Angew. Chem. Int. Ed. 2006, 45, 8103–8104, doi:10.1002/anie.200603378.
[39]
Paradowska, J.; Stodulski, M.; Mlynarski, J. Catalysts Based on Amino Acids for Asymmetric Reactions in Water. Angew. Chem. Int. Ed. 2009, 48, 4288–4297, doi:10.1002/anie.200802038.
[40]
Gruttadauria, M.; Giacalone, F.; Noto, R. Water in stereoselective organocatalytic reactions. Adv. Synth. Catal. 2009, 351, 33–57, doi:10.1002/adsc.200800731.
[41]
Raj, M.; Singh, V.K. Organocatalytic reactions in water. Chem. Commun. 2009, 6687–6703.
[42]
Mase, N.; Barbas, C.F., III. In water, on water, and by water: Mimicking nature's aldolases with organocatalysis and water. Org. Biomol. Chem. 2010, 8, 4043–4050, doi:10.1039/c004970k.
Bahmanyar, S.; Houk, K.N. The origin of stereoselectivity in proline-catalyzed intramolecular Aldol Reactions. J. Am. Chem. Soc. 2001, 123, 12911–12912, doi:10.1021/ja011714s.
[51]
Hoang, L.; Bahmanyar, S.; Houk, K.N.; List, B. Kinetic and Stereochemical Evidence for the Involvement of Only One Proline Molecule in the Transition States of Proline-Catalyzed Intra- and Intermolecular Aldol Reactions. J. Am. Chem. Soc. 2003, 125, 16–17, doi:10.1021/ja028634o.
[52]
Bahmanyar, S.; Houk, K.N.; Martin, H.J.; List, B. Quantum Mechanical Predictions of the Stereoselectivities of Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions. J. Am. Chem. Soc. 2003, 125, 2475–2479, doi:10.1021/ja028812d.
[53]
Luo, S.; Mi, X.; Liu, S.; Xu, H.; Cheng, J.-P. Surfactant-type asymmetric organocatalyst: Organocatalytic asymmetric Michael addition to nitrostyrenes in water. Chem. Commun. 2006, 3687–3689.
[54]
Siyutkin, D.E.; Kucherenko, A.S.; Struchkova, M.I.; Zlotin, S.G. A novel (S)-proline-modified task-specific chiral ionic liquid-an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Lett. 2008, 49, 1212–1216, doi:10.1016/j.tetlet.2007.12.044.
[55]
Siyutkin, D.E.; Kucherenko, A.S.; Zlotin, S.G. Hydroxy-α-amino acids modified by ionic liquid moieties: recoverable organocatalysts for asymmetric aldol reactions in the presence of water. Tetrahedron 2009, 65, 1366–1372, doi:10.1016/j.tet.2008.12.045.
[56]
Siyutkin, D.E.; Kucherenko, A.S.; Zlotin, S.G. A new (S)-prolinamide modified by an ionic liquid moiety—A high performance recoverable catalyst for asymmetric aldol reactions in aqueous media. Tetrahedron 2010, 66, 513–518, doi:10.1016/j.tet.2009.11.033.
[57]
Kochetkov, S.V.; Kucherenko, A.S.; Zlotin, S.G. (1R,2R)-Bis[(S)-prolinamido]cyclohexane Modified with Ionic Groups: The First C2-Symmetric Immobilized Organocatalyst for Asymmetric Aldol Reactions in Aqueous Media. Eur. J. Org. Chem. 2011, 6128–6133, doi:10.1002/ejoc.201100707.
[58]
Kochetkov, S.V.; Kucherenko, A.S.; Kryshtal, G.V.; Zhdankina, G.M.; Zlotin, S.G. Simple Ionic Liquid Supported C2-Symmetric Bisprolinamides as Recoverable Organocatalysts for the Asymmetric Aldol Reaction in the Presence of Water. Eur. J. Org. Chem. 2012, 7129–7134.
[59]
Lombardo, M.; Pasi, F.; Easwar, S.; Trombini, C. Direct Asymmetric Aldol Reaction Catalyzed by an Imidazolium-Tagged trans-4-Hydroxy-l-proline under Aqueous Biphasic Conditions. Synlett 2008, 2471–2474.
[60]
Lombardo, M.; Easwar, S.; Pasi, F.; Trombini, C. The Ion Tag Strategy as a Route to Highly Efficient Organocatalysts for the Direct Asymmetric Aldol Reaction. Adv. Synth. Catal. 2009, 351, 276–282, doi:10.1002/adsc.200800608.
[61]
Lombardo, M.; Easwar, S.; Marco, A.D.; Pasia, F.; Trombini, C. A modular approach to catalyst hydrophobicity for an asymmetric aldol reaction in a biphasic aqueous environment. Org. Biomol. Chem. 2008, 6, 4224–4229, doi:10.1039/b812607k.
[62]
Lombardo, M.; Chiarucci, M.; Quintavalla, A.; Trombini, C. Highly Efficient Ion-Tagged Catalyst for the Enantioselective Michael Addition of Aldehydes to Nitroalkenes. Adv. Synth. Catal. 2009, 351, 2801–2806, doi:10.1002/adsc.200900599.
[63]
Li, J.; Hua, F.; Xie, X.-K.; Liu, F.; Huang, Z.-Z. Synthesis of new functionalized chiral ionic liquid and its organocatalytic asymmetric epoxidation in water. Catal. Commun. 2009, 11, 276–279, doi:10.1016/j.catcom.2009.10.014.
[64]
Shen, Z.-L.; Cheong, H.-L.; Lai, Y.-C.; Loo, W.-Y.; Loh, T.-P. Application of recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective Diels–Alder reactions. Green Chem. 2012, 14, 2626–2630, doi:10.1039/c2gc35966a.
[65]
Zheng, Z.; Perkins, B.; Ni, B. Diarylprolinol Silyl Ether Salts as New, Efficient, Water-Soluble, and Recyclable Organocatalysts for the Asymmetric Michael Addition on Water. J. Am. Chem. Soc. 2010, 132, 50–51, doi:10.1021/ja9093583.
[66]
Ghosh, S.K.; Zheng, Z.; Ni, B. Highly Active Water-Soluble and Recyclable Organocatalyst for the Asymmetric 1,4-Conjugate Addition of Nitroalkanes to α,β-Unsaturated Aldehydes. Adv. Synth. Catal. 2010, 352, 2378–2382, doi:10.1002/adsc.201000344.
[67]
Sarkar, D.; Bhattarai, R.; Headley, A.D.; Ni, B. A Novel Recyclable Organocatalytic System for the Highly Asymmetric Michael Addition of Aldehydes to Nitroolefins in Water. Synthesis 2011, 1993–1997.
Walji, A.M.; MacMillan, D.W.C. Strategies to Bypass the Taxol Problem. Enantioselective Cascade Catalysis, a New Approach for the Efficient Construction of Molecular Complexity. Synlett 2007, 10, 1477–1489.
Yu, X.; Wang, W. Organocatalysis: Asymmetric cascade reactions catalysed by chiral secondary amines. Org. Biomol. Chem. 2008, 6, 2037–2046, doi:10.1039/b800245m.
[73]
Chintala, P.; Ghosh, S.K.; Long, E.; Headley, A.D.; Ni, B. The Application of a Recyclable Organocatalytic System to the Asymmetric Domino Michael/Henry Reaction in Aqueous Media. Adv. Synth.Catal. 2011, 353, 2905–2909, doi:10.1002/adsc.201100395.
[74]
Ghosh, S.K.; Dhungana, K.; Headley, A.D.; Ni, B. Highly Enantioselective and Recyclable Organocatalytic Michael Addition of Malalonates to α,β-Unsaturated Aldehydes in Aqueous Media. Org. Biomol. Chem. 2012, 10, 8322–8325, doi:10.1039/c2ob26248g.
[75]
Denmark, S.E.; Stavenger, R.A. Asymmetric Catalysis of Aldol Reactions with Chiral Lewis Bases (Trichlorosilyl Enolates). Acc. Chem. Res. 2000, 33, 432–440, doi:10.1021/ar960027g.
[76]
Mahrwald, R. Modern Aldol Reactions; Wiley-VCH: Weinheim, Germany, 2004; Volumes 1–2.
[77]
Saito, S.; Yamamoto, H. Design of Acid?Base Catalysis for the Asymmetric Direct Aldol Reaction. Acc. Chem. Res. 2004, 37, 570–579, doi:10.1021/ar030064p.
[78]
Trost, B.M.; Brindle, C.S. The direct catalytic asymmetric aldol reaction. Chem. Soc. Rev. 2010, 39, 1600–1632, doi:10.1039/b923537j.
[79]
Alcaide, B.; Almendros, P. Organocatalytic Reactions with Acetaldehyde. Angew. Chem. Int. Ed. 2008, 47, 4632–4634, doi:10.1002/anie.200801231.
[80]
Qiao, Y.; Chen, Q.; Lin, S.; Ni, B.; Headley, A.D. Organocatalytic Direct Asymmetric Crossed-Aldol Reactions of Acetaldehyde in Aqueous Media. J. Org. Chem. 2013, 78, 2693–2697, doi:10.1021/jo302442g.
[81]
Qiao, Y.; He, J.; Ni, B.; Headley, A.D. Asymmetric Michael Reaction of Acetaldehyde with Nitroolefins Catalyzed by Highly Water-Compatible Organocatalysts in Aqueous Media. Adv. Synth. Catal. 2012, 354, 2849–2853, doi:10.1002/adsc.201200215.
[82]
Ghosh, S.K.; Qiao, Y.; Ni, B.; Headley, A.D. Asymmetric Michael reactions catalyzed by a highly efficient and recyclable quaternary ammonium ionic liquid-supported organocatalyst in aqueous media. Org. Biomol. Chem. 2013, 11, 1801–1804, doi:10.1039/c3ob27398a.
[83]
Hu, S.; Jiang, T.; Zhang, Z.; Zhu, A.; Han, B.; Song, J.; Xie, Y.; Li, W. Functional ionic liquid from biorenewable materials: Synthesis and application as a catalyst in direct aldol reactions. Tetrahedron Lett. 2007, 48, 5613–5617, doi:10.1016/j.tetlet.2007.06.051.