全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Healthcare  2013 

Detection and Discrimination of Non-Melanoma Skin Cancer by Multimodal Imaging

DOI: 10.3390/healthcare1010064

Keywords: CARS, TPEF, SHG, multimodal imaging, coherent Raman scattering, skin cancer, basal cell carcinoma, squamous cell carcinoma, non-melanoma skin cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Non-melanoma skin cancer (NMSC) belongs to the most frequent human neoplasms. Its exposed location facilitates a fast ambulant treatment. However, in the clinical practice far more lesions are removed than necessary, due to the lack of an efficient pre-operational examination procedure: Standard imaging methods often do not provide a sufficient spatial resolution. The demand for an efficient in vivo imaging technique might be met in the near future by non-linear microscopy. As a first step towards this goal, the appearance of NMSC in various microspectroscopic modalities has to be defined and approaches have to be derived to distinguish healthy skin from NMSC using non-linear optical microscopy. Therefore, in this contribution the appearance of ex vivo NMSC in a combination of coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG) and two photon excited fluorescence (TPEF) imaging—referred as multimodal imaging—is described. Analogous to H&E staining, an overview of the distinct appearances and features of basal cell and squamous cell carcinoma in the complementary modalities is derived, and is expected to boost in vivo studies of this promising technological approach.

References

[1]  National Cancer Intelligence Network (NCIN). Non-Melanoma Skin Cancer in England, Scotland, Northern Ireland, and Ireland; NCIN: London, UK, 2013.
[2]  Stern, R.S. The mysteries of geographic variability in nonmelanoma skin cancer incidence. Arch. Dermatol. 1999, 135, 843–844, doi:10.1001/archderm.135.7.843.
[3]  Rogers, H.W.; Weinstock, M.A.; Harris, A.R.; Hinckley, M.R.; Feldman, S.R.; Fleischer, A.B.; Coldiron, B.M. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch. Dermatol. 2010, 146, 283–287, doi:10.1001/archdermatol.2010.19.
[4]  ?sterlind, A.; Hjalgrim, H.; Kulinsky, B.; Frentz, G. Skin cancer as a cause of death in Denmark. Br. J. Dermatol. 1991, 125, 580–582, doi:10.1111/j.1365-2133.1991.tb14799.x.
[5]  Mogensen, M.; Jemec, G.B.E. Diagnosis of nonmelanoma skin cancer/keratinocyte, carcinoma: A review of diagnostic accuracy of nonmelanoma, skin cancer diagnostic tests and technologies. Dermatol. Surg. 2007, 33, 1158–1174, doi:10.1111/j.1524-4725.2007.33251.x.
[6]  Mogensen, M.; Thrane, L.; J?rgensen, T.M.; Andersen, P.E.; Jemec, G.B.E. OCT imaging of skin cancer and other dermatological diseases. J. Biophotonics 2009, 2, 442–451.
[7]  Hinz, T.; Ehler, L.K.; Voth, H.; Fortmeier, I.; Hoeller, T.; Hornung, T.; Schmid-Wendtner, M.-H. Assessment of tumor thickness in melanocytic skin lesions: Comparison of optical coherence tomography, 20-MHz ultrasound and histopathology. Dermatology 2011, 223, 161–168, doi:10.1159/000332845.
[8]  Tang, S.; Zhou, Y.; Ju, M.J. Multimodal optical imaging with multiphoton microscopy and optical coherence tomography. J. Biophotonics 2012, 5, 396–403, doi:10.1002/jbio.201100138.
[9]  Sansa, N.; Farucha, M.; Chiavassa-Gandoisa, H.; de Ribes, C.L.C.; Paul, C.; Railhac, J.J. High-resolution magnetic resonance imaging in study of the skin: Normal patterns. Eur. J. Radiol. 2011, 80, e176–e181, doi:10.1016/j.ejrad.2010.06.002.
[10]  K?nig, K.; Martin, M.S.; K?hler, J.; Scharenberg, R.; Kaatz, M. Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases. J. Biophotonics 2010, 3, 759–773, doi:10.1002/jbio.201000074.
[11]  Smith, L.; MacNeil, S. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res. Technol. 2011, 17, 257–269, doi:10.1111/j.1600-0846.2011.00503.x.
[12]  Lin, S.-J.; Jee, S.-H.; Dong, C.-Y. Multiphoton microscopy: A new paradigm in dermatological imaging. Eur. J. Dermatol. 2007, 17, 361–366.
[13]  Perry, S.W.; Burke, R.M.; Brown, E.B. Two-photon and second harmonic microscopy in clinical and translational cancer research. Annu. Biomed. Eng. 2012, 40, 277–291, doi:10.1007/s10439-012-0512-9.
[14]  Tsai, T.H.; Jee, S.H.; Dong, C.Y.; Lin, S.J. Multiphoton microscopy in dermatological imaging. J. Dermatol. Sci. 2009, 56, 1–8, doi:10.1016/j.jdermsci.2009.06.008.
[15]  K?nig, K.; Ehlers, A.; Stracke, F.; Riemann, I. In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol. Physiol. 2006, 19, 78–88, doi:10.1159/000091974.
[16]  Lyubovitsky, J.G.; Krasieva, T.B.; Xu, X.; Andersen, B.; Tromberg, B.J. In situ multiphoton optical tomography of hair follicles in mice. J. Biomed. Opt. 2007, 12, e044003, doi:10.1117/1.2764462.
[17]  Mulholland, W.; Arbuthnott, E.A.H.; Bellhouse, B.; Cornhill, J.F.; Austyn, J.M.; Kendall, M. Multiphoton high-resolution 3D imaging of Langerhans cells and keratinocytes in the mouse skin model adopted for epidermal powdered immunization. J. Invest. Dermatol. 2006, 126, 1541–1548, doi:10.1038/sj.jid.5700290.
[18]  Roediger, B.; Ng, L.G.; Smith, A.L.; de St Groth, B.F.; Weninger, W. Visualizing dendritic cell migration within the skin. Histochem. Cell Biol. 2008, 130, 1131–1146, doi:10.1007/s00418-008-0531-7.
[19]  Giorgi, V.D.; Massi, D.; Sestini, S.; Cicchi, R.; Pavone, F.; Lotti, T. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: First experiences. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 314–316, doi:10.1111/j.1468-3083.2008.03045.x.
[20]  Lin, S.J.; Wu, R.J.; Tan, H.Y.; Lo, W.; Lin, W.C.; Young, T.H.; Hsu, C.J.; Chen, J.S.; Jee, S.H.; Dong, C.Y. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt. Lett. 2005, 30, 2275–2277, doi:10.1364/OL.30.002275.
[21]  K?nig, K. Clinical multiphoton tomography. J. Biophotonics 2008, 1, 13–23, doi:10.1002/jbio.200710022.
[22]  Lin, S.J.; Jee, S.H.; Kuo, C.J.; Wu, R.J.; Lin, W.C.; Chen, J.S.; Liao, Y.H.; Hsu, C.J.; Tsai, T.F.; Chen, Y.F.; et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt. Lett. 2006, 31, 2756–2758, doi:10.1364/OL.31.002756.
[23]  Paoli, J.; Smedh, M.; Ericson, M.B. Multiphoton laser scanning microscopy—A novel diagnostic method for superficial skin cancers. Semin. Cutan. Med. Surg. 2009, 28, 190–195, doi:10.1016/j.sder.2009.06.007.
[24]  Seidenari, S.; Arginelli, F.; Bassoli, S.; Cautela, J.; Cesinaro, A.M.; Guanti, M.; Guardoli, D.; Magnoni, C.; Manfredini, M.; Ponti, G.; et al. Diagnosis of BCC by multiphoton laser tomography. Skin Res. Technol. 2012, 19, e297–e304.
[25]  Tsai, M.R.; Shieh, D.B.; Lou, P.J.; Lin, C.F.; Sun, C.K. Characterization of oral squamous cell carcinoma based on higher-harmonic generation microscopy. J. Biophotonics 2012, 5, 415–424, doi:10.1002/jbio.201100144.
[26]  Gerger, A.; Horn, M.; Koller, S.; Weger, W.; Massone, C.; Leinweber, B.; Kerl, H.; Smolle, J. Confocal examination of untreated fresh specimens from basal cell carcinoma. Arch. Dermatol. 2005, 141, 1269–1274, doi:10.1001/archderm.141.10.1269.
[27]  Pellacani, G.; Guitera, P.; Longo, C.; Avramidis, M.; Seidenari, S.; Menzies, S. The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions. J. Invest. Dermatol. 2007, 127, 2759–2765.
[28]  Peng, T.; Xie, H.; Ding, Y.; Wang, W.; Li, Z.; Jin, D.; Tang, Y.; Ren, Q.; Xi, P. CRAFT: Multimodality confocal skin imaging for early cancer diagnosis. J. Biophotonics 2012, 5, 469–476, doi:10.1002/jbio.201100124.
[29]  Borst, J.W.; Visser, A.J.W.G. Fluorescence lifetime imaging microscopy in life sciences. Meas. Sci. Technol. 2010, 21, e102002, doi:10.1088/0957-0233/21/10/102002.
[30]  Cicchi, R.; Massi, D.; Sestini, S.; Carli, P.; Giorgi, V.D.; Lotti, T.; Pavone, F.S. Multidimensional non-linear laser imaging of basal cell carcinoma. Opt. Express 2007, 15, 10135–10148, doi:10.1364/OE.15.010135.
[31]  Meyer, T.; Bergner, N.; Bielecki, C.; Krafft, C.; Akimov, D.; Romeike, B.F.M.; Reichart, R.; Kalff, R.; Dietzek, B.; Popp, J. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. J. Biomed. Opt. 2011, 16, e021113, doi:10.1117/1.3533268.
[32]  Meyer, T.; Guntinas-Lichius, O.; von Eggeling, F.; Ernst, G.; Akimov, D.; Schmitt, M.; Dietzek, B.; Popp, J. Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: Toward intraoperative imaging. Head Neck 2013, 35, E280–E287, doi:10.1002/hed.23139.
[33]  Yang, Y.; Li, F.; Gao, L.; Wang, Z.; Thrall, M.J.; Shen, S.S.; Wong, K.K.; Wong, S.T.C. Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging. Biomed. Opt. Express 2011, 2, 2160–2174, doi:10.1364/BOE.2.002160.
[34]  K?nig, K.; Breunig, H.; Bückle, R.; Kellner-H?fer, M.; Weinigel, M.; Büttner, E.; Sterry, W.; Lademann, J. Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography. Laser Phys. Lett. 2011, 8, 465–468, doi:10.1002/lapl.201110014.
[35]  Vogler, N.; Meyer, T.; Akimov, D.; Latka, I.; Krafft, C.; Bendsoe, N.; Svanberg, K.; Dietzek, B.; Popp, J. Multimodal imaging to study the morphochemistry of basal cell carcinoma. J. Biophotonics 2010, 3, 728–736, doi:10.1002/jbio.201000071.
[36]  Levenson, M.; Bloembergen, N. Dispersion of the nonlinear optical susceptibility tensor on centrosymmetric media. Phys. Rev. B 1974, 10, 4447–4464, doi:10.1103/PhysRevB.10.4447.
[37]  Meyer, T.; Akimov, D.; Tarcea, T.; Chatzipapadopoulos, S.; Muschiolok, G.; Kobow, J.; Schmitt, M.; Popp, J. Three-dimensional molecular mapping of a multiple emulsion by means of CARS microscopy. J. Phys. Chem. B 2008, 112, 1420–1426, doi:10.1021/jp709643h.
[38]  Heuke, S.; Vogler, N.; Meyer, T.; Akimova, D.; Kluschke, F.; R?wert-Huber, H.J.; Lademann, J.; Dietzek, B.; Popp, J. Multimodal mapping of human skin. Br. J. Dermatol. 2013, doi:10.1111/bjd.12427.
[39]  R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. Available online: http://www.R-project.org/ (accessed on 3 April 2013).
[40]  Urbanek, S. PNG: Read and Write PNG ImagesR Package Version 0.1-4. 2011. Available online: http://CRAN.R-project.org/package=png/ (accessed on 3 April 2013).
[41]  Evans, C.L.; Xie, X.S. Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 2008, 1, 883–909, doi:10.1146/annurev.anchem.1.031207.112754.
[42]  Lim, R.S.; Suhalim, J.L.; Miyazaki-Anzai, S.; Miyazaki, M.; Levi, M.; Potma, E.O.; Tromberg, B.J. Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. J. Lipid Res. 2011, 52, 2177–2186, doi:10.1194/jlr.M018077.
[43]  Meyer, T.; Bergner, N.; Medyukhina, A.; Dietzek, B.; Krafft, C.; Romeike, B.F.M.; Reichart, R.; Kalff, R.; Popp, J. Interpreting CARS images of tissue within the C-H-stretching region. J. Biophotonics 2012, 5, 729–733, doi:10.1002/jbio.201200104.
[44]  Zipfel, W.R.; Williams, R.M.; Christie, R.; Nikitin, A.Y.; Hyman, B.T.; Webb, W.W. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 2003, 100, 7075–7080, doi:10.1073/pnas.0832308100.
[45]  Campagnola, P.J.; Millard, A.C.; Terasaki, M.; Hoppe, P.E.; Malone, C.J.; Mohler, W.A. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 2002, 81, 493–508.
[46]  Guo, Y.; Ho, P.P.; Tirksliunas, A.; Liu, F.; Alfano, R.R. Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses. Appl. Opt. 1996, 35, 6810–6813, doi:10.1364/AO.35.006810.
[47]  Mohler, W.; Millard, A.C.; Campagnolab, P.J. Second harmonic generation imaging of endogenous structural proteins. Methods 2003, 29, 97–109, doi:10.1016/S1046-2023(02)00292-X.
[48]  Freund, I.; Deutsch, M.; Sprecher, A. Connective tissue polarity: Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys. J. 1986, 50, 693–712, doi:10.1016/S0006-3495(86)83510-X.
[49]  Theodossiou, T.A.; Thrasivoulou, C.; Ekwobi, C.; Becker, D.L. Second harmonic generation confocal microscopy of collagen Type I from rat tendon cryosections. Biophys. J. 2006, 91, 4665–4677, doi:10.1529/biophysj.106.093740.
[50]  Huang, S.; Heikal, A.A.; Webb, W.W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 2002, 82, 2811–2825, doi:10.1016/S0006-3495(02)75621-X.
[51]  Paoli, J.; Smedh, M.; Wennberg, A.M.; Ericson, M.B. Multiphoton laser scanning microscopy on non-melanoma skin cancer: Morphologic features for future non-invasive diagnostics. J. Invest. Dermatol. 2008, 128, 1248–1255, doi:10.1038/sj.jid.5701139.
[52]  Morgan, M.B.; Hamill, J.R.; Spencer, J.M. Atlas of Mohs and Frozen Section Cutaneous Pathology; Springer: New York, NY, USA, 2009.
[53]  Rapini, R.P. Practical Dermatopathology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2005.
[54]  Fritsch, P. Dermatologie und Venerologie für das Studium; Springer Medizin Verlag: Heidelberg, Germany, 2009.
[55]  Van Kempen, L.C.; Rijntjes, J.; Claes, A.; Blokx, W.A.; Gerritsen, M.J.P.; Ruiter, D.J.; van Muijen, G.N. Type I collagen synthesis parallels the conversion of keratinocytic intraepidermal neoplasia to cutaneous squamous cell carcinoma. J. Pathol. 2004, 204, 333–339.
[56]  Thrasivoulou, C.; Virich, G.; Krenacs, T.; Korom, I.; Becker, D.L. Optical delineation of human malignant melanoma using second harmonic imaging of collagen. Biomed. Opt. Express 2011, 2, 1285–1295.
[57]  Szeimies, R.M.; Hauschild, A.; Garbe, C.; Kaufmann, R.; Landthaler, M. Tumoren der Haut; Georg Thieme Verlag KG: Stuttgart, Germany, 2010.
[58]  Marks, D.B.; Smith, C.; Marks, A.D.; Liebermann, M. Marks Basic Medical Biochemistry: A Clinical Approach; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2004.
[59]  Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 4, 646–674, doi:10.1016/j.cell.2011.02.013.
[60]  Talmadge, J.E.; Fidler, I.J. AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res. 2010, 70, 5649–5669, doi:10.1158/0008-5472.CAN-10-1040.
[61]  Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 2009, 9, 239–252, doi:10.1038/nrc2618.
[62]  Provenzano, P.P.; Eliceiri, K.W.; Campbell, J.M.; Inman, D.R.; White, J.G.; Keely, P.J. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006, 4, 38–52, doi:10.1186/1741-7015-4-38.
[63]  Heikal, A.A. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med. 2010, 4, 241–263, doi:10.2217/bmm.10.1.
[64]  Breunig, H.G.; Studier, H.; K?nig, K. Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo. Opt. Express 2010, 18, 7857–7871, doi:10.1364/OE.18.007857.
[65]  Uppal, A.; Gupta, P.K. Measurement of NADH concentration in normal and malignant human tissues from breast and oral cavity. Biotechnol. Appl. Biochem. 2003, 37, 45–50, doi:10.1042/BA20020052.
[66]  Yu, Q.; Heikal, A.A. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J. Photochem. Photobiol. B 2009, 95, 46–57, doi:10.1016/j.jphotobiol.2008.12.010.
[67]  Gupta, P.K.; Majumder, S.K.; Uppal, A. Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy. Lasers Surg. Med. 1997, 21, 417–422, doi:10.1002/(SICI)1096-9101(1997)21:5<417::AID-LSM2>3.0.CO;2-T.
[68]  Schmuth, M.; Jiang, Y.J.; Dubrac, S.; Elias, P.M.; Feingold, K.R. Peroxisome proliferator-activated receptors and liver X receptors in epidermal biology. J. Lipid Res. 2008, 49, 499–509, doi:10.1194/jlr.R800001-JLR200.
[69]  Sandilands, A.; Sutherland, C.; Irvine, A.D.; McLean, W.H.I. Filaggrin in the frontline: Role in skin barrier function and disease. J. Cell Sci. 2009, 122, 1285–1294.
[70]  Plathow, C.; Weber, W.A. Tumor cell metabolism imaging. J. Nucl. Med. 2008, 49, 43S–63S, doi:10.2967/jnumed.107.045930.
[71]  Santos, C.R.; Schulze, A. Lipid metabolism in cancer. FEBS J. 2012, 279, 2610–2623, doi:10.1111/j.1742-4658.2012.08644.x.
[72]  Zhang, F.; Du, G. Dysregulated lipid metabolism in cancer. World J. Biol. Chem. 2012, 3, 167–174, doi:10.4331/wjbc.v3.i8.167.
[73]  Yecies, J.L.; Manning, B.D. Chewing the fat on tumor cell metabolism. Cell 2010, 8, 28–30, doi:10.1016/j.cell.2009.12.037.
[74]  Kuhajda, F.P. Fatty acid synthase and cancer: New application of an old pathway. Cancer Res. 2006, 66, 5977–5980, doi:10.1158/0008-5472.CAN-05-4673.
[75]  Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7, 763–777, doi:10.1038/nrc2222.
[76]  Le, T.T.; Huff, T.B.; Cheng, J.X. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 2009, 9, 42–55, doi:10.1186/1471-2407-9-42.
[77]  Weinstock, M.; Bogaars, H.; Ashley, M.; Litle, V.; Bilodeau, E.; Kimmel, S. Nonmelanoma skin cancer mortality: A population-based study. Arch. Dermatol. 1991, 127, 1194–1197, doi:10.1001/archderm.1991.01680070094012.
[78]  Baumgartl, M.; Gottschall, T.; Abreu-Afonso, J.; Díez, A.; Meyer, T.; Dietzek, B.; Rothhardt, M.; Popp, J.; Limpert, J.; Tünnermann, A. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing. Opt. Express 2012, 20, 21010–21018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133