Exposure to microgravity during spaceflight is known to elicit orientation illusions, errors in sensory localization, postural imbalance, changes in vestibulo-spinal and vestibulo-ocular reflexes, and space motion sickness. The objective of this experiment was to investigate whether an alteration in cognitive visual-spatial processing, such as the perception of distance and size of objects, is also taking place during prolonged exposure to microgravity. Our results show that astronauts on board the International Space Station exhibit biases in the perception of their environment. Objects’ heights and depths were perceived as taller and shallower, respectively, and distances were generally underestimated in orbit compared to Earth. These changes may occur because the perspective cues for depth are less salient in microgravity or the eye-height scaling of size is different when an observer is not standing on the ground. This finding has operational implications for human space exploration missions.
References
[1]
Clément, G.; Reschke, M.F. Neuroscience in Space; Springer: New York, NY, USA, 2008.
[2]
Léone, G. The effect of gravity on human recognition of disoriented objects. Brain Res. Rev.?1998, 28, 203–214, doi:10.1016/S0165-0173(98)00040-X.
[3]
Frederici, A.; Levelt, W.J.M. Spatial reference in weightlessness: Perceptual factors and mental representation. Percept. Psychophys.?1990, 47, 253–266, doi:10.3758/BF03205000.
[4]
Matsakis, Y.; Lipshits, M.; Gurfinkel, V.S.; Berthoz, A. Effects of prolonged weightlessness on mental rotation of three-dimensional objects. Exp. Brain Res.?1993, 94, 152–162. 8335070
[5]
Dyde, R.T.; Jenkin, M.R.; Jenkin, H.L.; Zacher, J.E.; Harris, L.R. The effect of altered gravity states on the perception of orientation. Exp. Brain Res.?2009, 194, 647–660, doi:10.1007/s00221-009-1741-5.
[6]
Oman, C.M.; Howard, I.P.; Smith, T.; Beall, A.C.; Natapoff, A.; Zacher, J.E.; Jenkin, H.L. The Role of Visual Cues in Microgravity Spatial Orientation. In The Neurolab Spacelab Mission: Neuroscience Research in Space; Buckey, J.C., Homick, J.L., Eds.; National Aeronautics and Space Administration: Washington, DC, USA, 2003; pp. 69–81.
[7]
Clément, G.; Skinner, A.; Richard, G.; Lathan, C. Geometric illusions in astronauts during long-duration spaceflight. NeuroReport?2012, 23, 894–899, doi:10.1097/WNR.0b013e3283594705.
[8]
Loomis, J.M. Visual space perception: Phenomenology and function. Arquivos Brasileiros de Oftalmologia?2003, 66, 26–29, doi:10.1590/S0004-27492003000600004.
[9]
Clément, G.; Fraysse, M.; Deguine, O. Mental representation of space in vestibular patients with otolithic or rotatory vertigo. NeuroReport?2009, 20, 457–461, doi:10.1097/WNR.0b013e328326f815.
[10]
Clément, G.; Eckardt, J. Influence of the gravitational vertical on geometric visual illusions. Acta Astronaut.?2005, 56, 911–917, doi:10.1016/j.actaastro.2005.01.017.
[11]
Lathan, C.E.; Wang, Z.; Clément, G. Changes in the vertical size of a three-dimensional object drawn in weightlessness by astronauts. Neurosci. Lett.?2000, 295, 37–40, doi:10.1016/S0304-3940(00)01584-6.
[12]
Amorim, M.A.; Loomis, J.M.; Fukusima, S.S. Reproduction of object shape is more accurate without the continued availability of visual information. Perception?1998, 27, 69–86, doi:10.1068/p270069. 9692089
[13]
Loomis, J.M.; da Silva, J.A.; Fujita, N.; Fukusima, S.S. Visual space perception and visually directed action. J. Exp. Psychol.?1992, 18, 906–921.
[14]
Norman, J.F.; Todd, J.T.; Perotti, V.J.; Tittle, J.S. The visual perception of three-dimensional length. J. Exp. Psychol.?1996, 22, 173–186.
[15]
Daum, S.O.; Hecht, H. Distance estimation in vista space. Atten. Percept. Psychophys.?2009, 71, 1127–1137, doi:10.3758/APP.71.5.1127.
[16]
Stefanucci, J.K.; Proffitt, D.R. The roles of altitude and fear in the perception of height. J. Exp. Psychol.?2009, 35, 424–438.
[17]
Gregory, R.L. The Intelligent Eye; McGraw-Hill: New York, NY, USA, 1970.
[18]
Hammersely, R. Things are deeper than they are wide: A strange error of distance estimation. Perception?1983, 12, 589–591, doi:10.1068/p120589. 6676709
[19]
Gilinsky, A. Perceived size and distance in visual space. Psychol. Rev.?1951, 58, 460–482, doi:10.1037/h0061505.
[20]
Rock, I. Orientation and Form; Academy Press: New York, NY, USA, 1973.
[21]
Sikl, R.; Simecek, M. Perceived size and perceived direction: The interplay of the two descriptors of visual space. Perception?2011, 40, 953–961, doi:10.1068/p6537.
[22]
Leibowitz, H.W.; Harvey, L.O. Effect of instructions, environment, and type of test object on matched size. J. Exp. Psychol.?1969, 81, 36–43, doi:10.1037/h0027433.
[23]
Rock, I. Perception; Scientific American Books Inc.: New York, NY, USA, 1984.
[24]
Linkenauger, S.; Witt, J.K.; Stefanucci, J.K.; Bakdash, J.Z.; Proffitt, D.R. The effects of handedness and reachability on perceived distance. J. Exp. Psychol.?2009, 35, 1649–1660.
[25]
Bertamini, M.; Yang, T.L.; Proffitt, D.R. Relative size perception at a distance is best at eye level. Percept. Psychophys.?1998, 60, 673–682, doi:10.3758/BF03206054.
[26]
Wraga, M. Using eye height in different postures to scale the heights of objects. J. Exp. Psychol.?1999, 25, 518–530.
[27]
Clément, G.; Lathan, C.; Lockerd, A. Perception of depth in microgravity during parabolic flight. Acta Astronaut.?2008, 63, 828–832, doi:10.1016/j.actaastro.2008.01.002.
[28]
Howard, I.P. Human Visual Orientation; Wiley: Chichester, NJ, USA, 1982.
[29]
Clément, G.; Bukley, A. Mach’s square-or-diamond phenomenon in microgravity during parabolic flight. Neurosci. Lett.?2008, 447, 179–182, doi:10.1016/j.neulet.2008.10.012.
[30]
Ching, C.; Peng, J.; Fang, Y.; Lin, C. Size judgments of an object in elevation and in descent. Acta Psychol. Sin.?1963, 24, 175–185.
[31]
Godwin, R. Apollo12: The NASA Mission Reports; Apogee Books: Burlington, ON, Canada, 1999.
[32]
McIntyre, J.; Zago, M.; Berthoz, A.; Lacquaniti, R. Does the brain model Newton’s laws? Nat. Neurosci.?2001, 4, 693–695, doi:10.1038/89477.
[33]
Paloski, W.H.; Oman, C.M.; Bloomberg, J.J.; Reschke, M.F.; Wood, S.J.; Harm, D.L.; Peters, B.T.; Mulavara, A.P.; Locke, J.P.; Stone, L.S. Risk of sensory-motor performance failures affecting vehicle control during space missions: A review of the evidence. J. Gravit. Physiol.?2008, 15, 1–29.
[34]
Siki, R.; Simecek, M. The effect of confinement on visual space perception: The results of Mars-500 experiment. Atten. Percept. Psychophys.?2013. in press.
[35]
Oberg, J.E. Shuttle-Mir’s lessons for the international space station. IEEE Spectr.?1998, 35, 28–37, doi:10.1109/6.681969.