全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Materials  2014 

Fluorescence Sensing of the Interaction between Biomembranes with Different Lipid Composition and Endocrine Disrupting Chemicals

DOI: 10.3390/ma7010170

Keywords: fluorescence sensing, endocrine disrupting chemicals, biomembrane, liposomes, pattern analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fluorescence sensing of the interaction between biomembranes with different lipid composition and endocrine disrupting chemicals (EDCs) was carried out by using a liposome-encapsulating fluorescence dye (carboxyfluorescein (CF)-liposome). We detected a significant increase in fluorescence intensity in CF-liposome solutions due to the leakage of fluorescence caused by the interaction of EDCs with the biomembranes of liposomes. The temporal increases in fluorescent were significantly different among the lipid compositions of CF-liposome and the EDCs. Results were considered by summarizing the interactions in radar charts and by showing the pattern of interaction of each EDC. Each chart showed a dissimilar pattern reflecting the complexity of the biomembrane-EDC interaction. The results indicate that this fluorescence sensing could be useful to evaluate the interaction.

References

[1]  Colborn, T.; Saal, F.S.V.; Soto, A.M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Persp?1993, 101, 378–384.
[2]  Frye, C.A.; Bo, E.; Calamandrei, G.; Calza, L.; Dessi-Fulgheri, F.; Fernandez, M.; Fusani, L.; Kah, O.; Kajta, M.; Le Page, Y.; et al. Endocrine disrupters: A review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J. Neuroendocrinol?2012, 24, 144–159.
[3]  Wetherill, Y.B.; Akingbemi, B.T.; Kanno, J.; McLachlan, J.A.; Nadal, A.; Sonnenscheing, C.; Watson, C.S.; Zoeller, R.T.; Belcher, S.M. In vitro molecular mechanisms of bisphenol a action. Reprod. Toxicol?2007, 24, 178–198.
[4]  Alonso-Magdalena, P.; Laribi, O.; Ropero, A.B.; Fuentes, E.; Ripoll, C.; Soria, B.; Nadal, A. Low doses of bisphenol a and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of langerhans. Environ. Health Persp?2005, 113, 969–977.
[5]  Alonso-Magdalena, P.; Ropero, A.B.; Carrera, M.P.; Cederroth, C.R.; Baquie, M.; Gauthier, B.R.; Nef, S.; Stefani, E.; Nadal, A. Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLos One?2008, 3, e2069.
[6]  Rubin, B.S.; Bisphenol, A. An endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol?2011, 127, 27–34.
[7]  Watson, C.S.; Bulayeva, N.N.; Wozniak, A.L.; Finnerty, C.C. Signaling from the membrane via membrane estrogen receptor-alpha: Estrogens, xenoestrogens, and phytoestrogens. Steroids?2005, 70, 364–371.
[8]  Hsieh, T.H.; Tsai, C.F.; Hsu, C.Y.; Kuo, P.L.; Lee, J.N.; Chai, C.Y.; Wang, S.C.; Tsai, E.M. Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the ahr/hdac6/c-myc signaling pathway. FASEB J?2012, 26, 778–787.
[9]  Agretti, P.; Dimida, A.; de Marco, G.; Ferrarini, E.; Gonzalez, J.C.R.; Santini, F.; Vitti, P.; Pinchera, A.; Tonacchera, M. Study of potential inhibitors of thyroid iodide uptake by using CHO cells stably expressing the human sodium/iodide symporter (hNIS) protein. J. Endocrinol. Invest?2011, 34, 170–174.
[10]  Waller, C.L.; Oprea, T.I.; Chae, K.; Park, H.K.; Korach, K.S.; Laws, S.C.; Wiese, T.E.; Kelce, W.R.; Gray, L.E. Ligand-based identification of environmental estrogens. Chem. Res. Toxicol?1996, 9, 1240–1248.
[11]  Nakane, Y.; Ito, M.M.; Kubo, I. Novel detection method of endocrine disrupting chemicals utilizing liposomes as cell membrane model. Anal. Lett?2008, 41, 2923–2932.
[12]  Gobas, F.; Lahittete, J.M.; Garofalo, G.; Wan, Y.S.; Mackay, D. A novel method for measuring membrane-water partition-coefficients of hydrophobic organic-chemicals-comparison with 1-octanol-water partitioning. J. Pharm. Sci?1988, 77, 265–272.
[13]  Escher, B.I.; Schwarzenbach, R.P.; Westall, J.C. Evaluation of liposome-water partitioning of organic acids and bases. 1. Development of a sorption model. Environ. Sci. Technol?2000, 34, 3954–3961.
[14]  Yamamoto, H.; Liljestrand, H.M. Partitioning of selected estrogenic compounds between synthetic membrane vesicles and water: Effects of lipid components. Environ. Sci. Technol?2004, 38, 1139–1147.
[15]  Kwon, J.H.; Liljestrand, H.M.; Katz, L.E. Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles. Environ. Toxicol. Chem?2006, 25, 1984–1992.
[16]  Kwon, J.H.; Liljestran, H.M.; Katz, L.E.; Yamamoto, H. Partitioning thermodynamics of selected endocrine disruptors between water and synthetic membrane vesicles: Effects of membrane compositions. Environ. Sci. Technol?2007, 41, 4011–4018.
[17]  Nakane, Y.; Kubo, I. Degradation of liposome cluster caused by the interaction with endocrine disrupting chemicals (EDCs). Colloids Surf. B Biointerfaces?2008, 66, 60–64.
[18]  Nakane, Y.; Kubo, I. Biosensor for the detection of endocrine disrupting chemicals based on the degradation of cell membrane model immobilized on qcm and its application to the detection of nonylphenol. Electrochemistry?2008, 76, 535–537.
[19]  Nakane, Y.; Kubo, I. Layer-by-layer of liposomes and membrane protein as a recognition element of biosensor. Thin Solid Films?2009, 518, 678–681.
[20]  Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 5th ed ed.; Garland Science: New York, NY, USA, 2008.
[21]  Toko, K. Taste sensor. Sens. Actuat. B Chem?2000, 64, 205–215.
[22]  Kobayashi, Y.; Habara, M.; Ikezazki, H.; Chen, R.; Naito, Y.; Toko, K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors?2010, 10, 3411–3443.
[23]  Bechi, N.; Sorda, G.; Spagnoletti, A.; Bhattacharjee, J.; Ferro, E.A.V.; Barbosa, B.D.; Frosini, M.; Valoti, M.; Sgaragli, G.; Paulesu, L.; et al. Toxicity assessment on trophoblast cells for some environment polluting chemicals and 17 beta-estradiol. Toxicol. Vitro?2013, 27, 995–1000.
[24]  Morck, T.J.; Sorda, G.; Bechi, N.; Rasmussen, B.S.; Nielsen, J.B.; Ietta, F.; Rytting, E.; Mathiesen, L.; Paulesu, L.; Knudsen, L.E. Placental transport and in vitro effects of Bisphenol A. Reprod. Toxicol?2010, 30, 131–137.
[25]  Blom, A.; Ekman, E.; Johannisson, A.; Norrgren, L.; Pesonen, M. Effects of xenoestrogenic environmental pollutants on the proliferation of a human breast cancer cell line (MCF-7). Arch. Environ. Contam. Toxicol?1998, 34, 306–310.
[26]  Mankidy, R.; Wiseman, S.; Ma, H.; Giesy, J.P. Biological impact of phthalates. Toxicol. Lett?2013, 217, 50–58.
[27]  Larry, T.; Brooke, G.T. Ambient Aquatic Life Water Quality Criteria; US Environmental Protection Agency: Washington, DC, USA, 2005.
[28]  Hunziker, R.W.; Escher, B.I.; Schwarzenbach, R.P. pH dependence of the partitioning of triphenyltin and tributyltin between phosphatidylcholine liposomes and water. Environ. Sci. Technol?2001, 35, 3899–3904.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133