The electrochemical behavior of polycrystalline TiO 2 anatase coatings prepared by a one-step hydrothermal synthesis on commercially pure (CP) Ti grade 2 and a Ti13Nb13Zr alloy for bone implants was investigated in Hank’s solution at 37.5 °C. The aim was to verify to what extent the in-situ-grown anatase improved the behavior of the substrate in comparison to the bare substrates. Tafel-plot extrapolations from the potentiodynamic curves revealed a substantial improvement in the corrosion potentials for the anatase coatings. Moreover, the coatings grown on titanium also exhibited lower corrosion-current densities, indicating a longer survival of the implant. The results were explained by considering the effects of crystal morphology, coating thickness and porosity. Evidence for the existing porosity was obtained from corrosion and nano-indentation tests. The overall results indicated that the hydrothermally prepared anatase coatings, with the appropriate morphology and surface properties, have attractive prospects for use in medical devices, since better corrosion protection of the implant can be expected.
References
[1]
Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep?, 47, 49–121, doi:10.1016/j.mser.2004.11.001.
[2]
Grosgogeat, B.; Boinet, M.; Dalard, F.; Lissac, M. Electrochemical studies of the corrosion behaviour of titanium and the Ti-6Al-4V alloy using electrochemical impedance spectroscopy. Bio Med. Mater. Eng?, 14, 323–331.
[3]
Granchi, D.; Ciapetti, G.; Savarino, L.; Stea, S.; Filippini, F.; Sudanese, A.; Rotini, R.; Giunti, A. Expression of the CD69 activation antigen on lymphocytes of patients with hip prosthesis. Biomaterials?, 21, 2059–2065, doi:10.1016/S0142-9612(00)00099-5.
[4]
Hallab, N.J.; Mikecz, K.; Vermes, C.; Skipor, A.; Jacobs, J.J. Differential lymphocyte reactivity to serum-derived metal–protein complexes produced from cobalt-based and titanium-based implant alloy degradation. J. Biomed. Mater. Res?, 56, 427–436, doi:10.1002/1097-4636(20010905)56:3<427::AID-JBM1112>3.0.CO;2-E.
[5]
Okazaki, Y.; Rao, S.; Ito, Y.; Tateishi, T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials?, 19, 1197–1215, doi:10.1016/S0142-9612(97)00235-4.
[6]
Eisenbarth, E.; Velten, D.; Schenk-Meuser, K.; Linez, P.; Biehl, V.; Duschner, H.; Breme, J.; Hildebrand, H. Interactions between cells and titanium surfaces. Biomol. Eng?, 19, 243–249, doi:10.1016/S1389-0344(02)00032-1.
[7]
Sargeant, A.; Goswami, T. Hip implants—Paper VI—Ion concentrations. Mater. Des?, 28, 155–171, doi:10.1016/j.matdes.2005.05.018.
[8]
Kamachimudali, U.; Sridhar, T.M.; Raj, B. Corrosion of bio implants. Sadhana?, 28, 601–637, doi:10.1007/BF02706450.
[9]
Campbell, A.; Hamai, D.; Bondy, S.C. Differential toxicity of aluminum salts in human cell lines of neural origin: Implications for neurodegeneration. NeuroToxicol?, 22, 63–71, doi:10.1016/S0161-813X(00)00007-3.
[10]
Pawlowski, L. Thick laser coatings: A review. J. Therm. Spray Tech?, 8, 279–295, doi:10.1361/105996399770350502.
[11]
Lee, H.; Dregia, S.; Akbar, S.; Alhoshan, M. Growth of 1-D TiO2 nanowires on Ti and Ti alloys by oxidation. J. Nanomater?, 2010, 1–7.
[12]
Drnov?ek, N.; Rade, K.; Milacic, R. ?trancar, J.; Novak, S. The properties of bioactive TiO2 coatings on Ti-based implants. Surf. Coat. Technol?, 209, 177–183, doi:10.1016/j.surfcoat.2012.08.037.
[13]
Sul, Y.T.; Johansson, C.B.; Jeong, Y.; Roser, K.; Wennerberg, A.; Albrektsson, T. Oxidized implants and their influence on the bone response. J. Mater. Sci. Mater. Med?, 12, 1025–1031, doi:10.1023/A:1012837905910.
[14]
Lorenzetti, M.; Biglino, D.; Novak, S.; Kobe, S. Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater. Sci. Eng. C?2013. Submitted.
[15]
Martins, D.Q.; Osório, W.R.; Souza, M.E.P.; Caram, R.; Garcia, A. Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications. Electrochim. Acta?, 53, 2809–2817.
[16]
Metiko?-Hukovic, M.; Kwokal, A.; Piljac, J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials?, 24, 3765–3775.
[17]
Aparicio, C.; Javier Gil, F.; Fonseca, C.; Barbosa, M.; Planell, J.A. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials?, 24, 263–273.
[18]
McCafferty, E. Thermodynamics of Corrosion: Pourbaix Diagrams. In Introduction to Corrosion Science; Springer: New York, NY, USA, 2010; pp. 95–117.
[19]
Kadowaki, N.T.; Martinez, G.A.S.; Robin, A. Electrochemical behavior of three CP titanium dental implants in artificial saliva. Mater. Res?, 12, 363–366.
[20]
Majumdar, P.; Singh, S.B.; Chatterjee, U.K.; Chakraborty, M. Corrosion behaviour of heat treated boron free and boron containing Ti–13Zr–13Nb (wt%) alloy in simulated body fluid. J. Mater. Sci. Mater. Med?, 22, 797–807.
[21]
Khan, M.A.; Williams, R.L.; Williams, D.F. In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials?, 17, 2117–2126.
[22]
Raman, V.; Tamilselvi, S.; Nanjundan, S.; Rajendran, N. Electrochemical behaviour of titanium and titanium alloy in artificial saliva. Trends Biomater. Artif. Organs?, 18, 137–140.
[23]
Assis, S.L.D.; Wolynec, S.; Costa, I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta?, 51, 1815–1819.
[24]
Yu, W.Q.; Qiu, J.; Xu, L.; Zhang, F.Q. Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution. Biomed. Mater?, 4, doi:10.1088/1748-6041/4/6/065012.
[25]
Shukla, A.K.; Balasubramaniam, R. Effect of surface treatment on electrochemical behavior of CP Ti, Ti–6Al–4V and Ti–13Nb–13Zr alloys in simulated human body fluid. Corros. Sci?, 48, 1696–1720.
[26]
McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci?, 47, 3202–3215.
[27]
López, M.F.; Gutiérrez, A.; Jiménez, J.A. In vitro corrosion behaviour of titanium alloys without vanadium. Electrochim. Acta?, 47, 1359–1364.
[28]
Karpagavalli, R.; Zhou, A.; Chellamuthu, P.; Nguyen, K. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. J. Biomed. Mater. Res. A?, 83A, 1087–1095.
[29]
Zaveri, N.; McEwen, G.; Karpagavalli, R.; Zhou, A. Biocorrosion studies of TiO2 nanoparticle-coated Ti6Al4V implant in simulated biofluids. J. Nanopart. Res?, 12, 1609–1623.
[30]
Indira, K.; Kamachi Mudali, U.; Rajendran, N. Corrosion behavior of electrochemically assembled nanoporous titania for biomedical applications. Ceram. Int?, 39, 959–967, doi:10.1016/j.ceramint.2012.07.013.
[31]
Xiao, X.F.; Liu, R.F.; Zheng, Y.Z. Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal–electrochemical method on titanium. Surf. Coat. Technol?, 200, 4406–4413.
[32]
Baszkiewicz, J.; Krupa, D.; Mizera, J.; Sobczak, J.W.; Bilinski, A. Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment. Vacuum?, 78, 143–147.
[33]
Park, H.H.; Park, I.S.; Kim, K.S.; Jeon, W.Y.; Park, B.K.; Kim, H.S.; Bae, T.S.; Lee, M.H. Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation. Electrochim. Acta?, 55, 6109–6114.
[34]
Kek Merl, D.; Panjan, P.; Kovac, J. Corrosion and surface study of sputtered Al-W coatings with a range of tungsten contents. Corros. Sci?, 69, 359–368, doi:10.1016/j.corsci.2013.01.002.
[35]
Solar, R.J.; Pollack, S.R.; Korostoff, E. In vitro corrosion testing of titanium surgical implant alloys: An approach to understanding titanium release from implants. J. Biomed. Mater. Res?, 13, 217–250.
[36]
Bendavid, A.; Martin, P.J.; Takikawa, H. Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films?, 360, 241–249.
[37]
Yin, W.-J.; Chen, S.; Yang, J.-H.; Gong, X.-G.; Yan, Y.; Wei, S.-H. Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Appl. Phys. Lett?, 96, 221901:1–221901:3.
[38]
Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater?, 51, 801–806.
[39]
Pellicer, E.; Pané, S.; Panagiotopoulou, V.; Fusco, S.; Sivaraman, K.M.; Suri?ach, S.; Baró, M.D.; Nelson, B.J.; Sort, J. Localized electrochemical deposition of porous Cu-Ni microcolumns: Insights into the growth mechanisms and the mechanical performance. Int. J. Electrochem. Sci?, 7(1), 4014–4029.
[40]
Crawford, G.A.; Chawla, N.; Das, K.; Bose, S.; Bandyopadhyay, A. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater?, 3, 359–367.
[41]
Whitehead, A.J.; Page, T.F. Nanoindentation studies of thin film coated systems. Thin Solid Films?, 220, 277–283.
[42]
Davis, L.E. Handbook of Auger Electron Spectroscopy: A Reference Book of Standard Data for Identification and Interpretation of Auger Electron Spectroscopy Data; Physical Electronics Industries: Eden Prairie, MN, USA, 1976.
[43]
Bottino, M.C.; Coelho, P.G.; Henriques, V.A.; Higa, O.Z.; Bressiani, A.H.; Bressiani, J.C. Processing, characterization, and in vitro/in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys. J. Biomed. Mater. Res. A?, 88, 689–696.
[44]
Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res?, 7(1), 1564–1583.
[45]
Ramakrishnan, N.; Arunachalam, V.S. Effective elastic moduli of porous solids. J. Mater. Res?, 25, 3930–3937.
[46]
Soares, P.; Mikowski, A.; Lepienski, C.M.; Santos, E.; Soares, G.A.; Filho, V.S.; Kuromoto, N.K. Hardness and elastic modulus of TiO2 anodic films measured by instrumented indentation. J. Biomed. Mater. Res. B?, 84B, 524–530.