In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe 2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe 2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe 2 absorber layers. After spraying on Mo/glass substrates, the CuInSe 2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N 2 as atmosphere. When the CuInSe 2 thin films were annealed, without extra Se or H 2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe 2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe 2 absorber layers could be controlled as the volume of used dispersed CuInSe 2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe 2 absorber layers obtained by the Spray Coating Method.
References
[1]
Powalla, M.; Voorwinden, G.; Hariskos, D.; Jackson, P.; Kniese, R. Highly efficient CIS solar cells and modules made by the co-evaporation process. Thin Solid Films?2009, 517, 2111–2114, doi:10.1016/j.tsf.2008.10.126.
[2]
Hsu, C.Y.; Huang, P.C.; Chen, Y.Y.; Wen, D.C. Fabrication of a Cu(InGa)Se2 thin film photovoltaic absorber by rapid thermal annealing of CuGa/In precursors coated with a Se layer. Int. J. Photoenergy?2013, 2013, 132105:1–132105:7.
[3]
Lin, Y.C.; Ke, J.H.; Yen, W.T.; Liang, S.C.; Wu, C.H.; Chiang, C.T. Preparation and characterization of Cu(In,Ga)(Se,S)2 films without selenization by co-sputtering from Cu(In,Ga)Se2 quaternary and In2S2 targets. Appl. Surf. Sci?2011, 257, 4278–4284, doi:10.1016/j.apsusc.2010.12.036.
[4]
Probst, V.; Stetter, W.; Riedl, W.; Vogt, H.; Wendl, M.; Calwer, H.; Zweigart, S.; Ufert, K.D.; Freienstein, B.; Cerva, H.; Karg, F.H. Rapid CIS-process for high efficiency PV-modules: development towards large area processing. Thin Solid Films?2001, 387, 262–267, doi:10.1016/S0040-6090(00)01800-9.
[5]
Song, H.K.; Jeong, J.K.; Kim, H.J.; Kim, S.K.; Yoon, K.H. Fabrication of CuIn1?x Gax Se2 thin film solar cells by sputtering and selenization process. Thin Solid Films?2003, 435, 186–192, doi:10.1016/S0040-6090(03)00350-X.
[6]
Park, H.; Kim, S.C.; Lee, S.H.; Koo, J.; Lee, S.H.; Jeon, C.W.; Yoon, S.; Kim, W.K. Effect of precursor structure on Cu(InGa)Se2 formation by reactive annealing. Thin Solid Films?2011, 519, 7245–72491, doi:10.1016/j.tsf.2010.12.220.
[7]
Shi, J.H.; Li, Z.Q.; Zhang, D.W.; Liu, Q.Q.; Sun, Z.; Huang, S.M. Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Prog. Photovolt?2011, 19, 160–164, doi:10.1002/pip.1001.
[8]
Guha, P.; Kundu, S.N.; Chaudhuri, S.; Pal, A.K. Electron transport processes in CuIn1?xGaxSe2 films prepared by four source co-evaporation technique. Mater. Chem. Phy?2002, 74, 192–200, doi:10.1016/S0254-0584(01)00462-X.
[9]
Saji, V.S.; Choi, I.H.; Lee, C.W. Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2 (CIGS) solar cells. Sol. Energy?2011, 85, 2666–2678, doi:10.1016/j.solener.2011.08.003.
Wu, C.C.; Yang, C.F. Investigate the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method. Nanoscale Res. Lett?2013, 8, doi:10.1186/1556-276X-8-33.
[12]
Huang, H.H.; Diao, C.C.; Yang, C.F.; Huang, C.J. Effects of substrate temperatures on the crystallizations and microstructures of electron beam evaporation YSZ thin films. J. Alloys Compd?2010, 500, 82–86, doi:10.1016/j.jallcom.2010.03.216.
[13]
Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2001; pp. 167–171.
[14]
Yang, C.F.; Wu, L.; Wu, T.S. A new sintering agent for BaTiO3: The binary BaO-CuO systems. J. Mater. Sci. Lett?1992, 11, 1246–1248, doi:10.1007/BF00729781.
[15]
Luo, P.; Yu, P.; Zuo, R.; Jin, J.; Ding, Y.; Song, J.; Chen, Y. The preparation of CuInSe2 films by solvothermal route and non-vacuum spin-coating process. Phys. B?2010, 405, 3294–3298, doi:10.1016/j.physb.2010.04.063.
[16]
Kavcar, N. Study of the sub-bandgap absorption and the optical transitions in CuInSe2 polycrystalline thin films. Sol. Energy Mater. Sol. Cells?1998, 52, 183–195, doi:10.1016/S0927-0248(97)00287-0.
[17]
Rabeh, M.B.; Chaglabou, N.; Kanzari, M. Effect of antimony incorporation in CuInS2 thin films. Chalcogenide Lett?2009, 6, 155–161.
[18]
Igasaki, Y.; Saito, H. Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire (1210). J. Appl. Phys?1991.