The Ti–15Mo alloy has its mechanical properties strongly altered by heat treatments and by addition of interstitial elements, such as, oxygen, for example. In this sense, the objective of this paper is to analyze the effect of the introduction of oxygen in selected mechanical properties and the biocompatibility of Ti–15Mo alloy. The samples used in this study were prepared by arc-melting and characterized by density measurements, X-ray diffraction, scanning electron microscopy, microhardness, modulus of elasticity, and biocompatibility tests. Hardness measurements were shown to be sensitive to concentration of oxygen. The modulus results showed interstitial influence in value; this was verified under several conditions to which the samples were exposed. Cytotoxicity tests conducted in vitro showed that the various processing conditions did not alter the biocompatibility of the material.
References
[1]
Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed ed.; Academic Press: New York, NY, USA, 2004.
[2]
McLachlan, D.R.C. Aluminium and the risk for alzheimer’s disease. Environmetrics?1995, 6, 233–275.
[3]
Steinemann, S.G. Corrosion of Surgical Implants—In Vivo and in Vitro Tests. In Evaluation of Biomaterials; John Wiley: New York, NY, USA, 1980.
[4]
Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci?2009, 54, 397–425.
[5]
Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater?2008, 1, 30–42.
[6]
Ho, W.F.; Ju, C.P.; Chern Lin, J.H. Structure and properties of cast binary Ti–Mo alloys. Biomaterials?1999, 20, 2115–2122.
[7]
Sukedai, E.; Yoshimitsu, D.; Matsumoto, H.; Hashimoto, H.; Kiritani, M. ? to ω phase transformation due to aging in a Ti–Mo alloy deformed in impact compression. Mater. Sci. Eng. A?2003, 350, 133–138.
[8]
Guo, H.; Enomoto, M. Surface reconstruction associated with a precipitation in a Ti–Mo alloy. Scr. Mater?2006, 54, 1409–1413.
[9]
Chen, Y.-Y.; Xu, L.-J.; Liu, Z.-G.; Kong, F.-T.; Chen, Z.-Y. Microstructures and properties of titanium alloys Ti–Mo for dental use. Trans. Nonferrous Metals Soc. China?2006, 16, s824–s828.
[10]
Oliveira, N.T.C.; Aleixo, G.; Caram, R.; Guastaldi, A.C. Development of Ti–Mo alloys for biomedical applications: Microstructure and electrochemical characterization. Mater. Sci. Eng. A?2007, 452–453, 727–731.
[11]
Oliveira, N.T.C.; Guastaldi, A.C. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater?2009, 5, 399–405.
[12]
Oliveira, N.T.C.; Guastaldi, A.C. Electrochemical behavior of Ti–Mo alloys applied as biomaterial. Corros. Sci?2008, 50, 938–945.
[13]
Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications; ASTM International: Conshohocken, PA, USA, 2008.
[14]
Martins, J.R.S., Jr.; Nogueira, R.A.; Araújo, R.O.D.; Donato, T.A.G.; Arana-Chavez, V.E.; Claro, A.P.R.A.; Moraes, J.C.S.; Buzalaf, M.A.R.; Grandini, C.R. Preparation and characterization of Ti–15Mo alloy used as biomaterial. Mater. Res?2011, 14, 107–112.
[15]
Martins, J.J.R.S.; Grandini, C.R. Structural characterization of Ti–15Mo alloy used as biomaterial by rietveld method. J. Appl. Phys?2012, 111, 083535:1–083535:8.
[16]
Martins, J.R.S., Jr.; Nogueira, R.A.; Araújo, R.O.D.; Grandini, C.R. Diffusion of oxygen and nitrogen in the Ti–15Mo alloy used for biomedical applications. Defect Diffus. Forum?2012, 326–328, 696–701.
[17]
Nowick, A.S.; Berry, B.S. Anelastic Relaxation in Crystalline Solids; Academic Press: New York, NY, USA, 1972.
[18]
Grandini, C.R. A low cost automatic system for anelastic relaxations measurements. Revista Brasileira de Aplica??es de Vácuo (In portughese)?2002, 21, 13–16.
[19]
Pint?o, C.A.F.; Almeida, L.H.D.; Grandini, C.R. Medida do momento de inércia de um pêndulo de tor??o para estudo de relaxa??es anelásticas. Revista Brasileira de Aplica??es de Vácuo (In portughese)?2006, 25, 189–192.
[20]
Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. In ISO 10993–5; International Organization for Standardization: Geneva, Switzerland, 2009.
[21]
Nanci, A.; Zalzal, S.; Gotoh, Y.; McKee, M.D. Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures. Microsc. Res. Tech?1996, 33, 214–231.
[22]
Lide, D. Crc Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; CRC Press: Boca Raton, FL, USA, 2004.
[23]
Sugano, M.; Tsuchida, Y.; Satake, T.; Ikeda, M. A microstructural study of fatigue fracture in titanium-molybdenum alloys. Mater. Sci. Eng. A?1998, 243, 163–168.
[24]
Nag, S.; Banerjee, R.; Fraser, H.L. Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater. Sci. Eng. C?2005, 25, 357–362.
[25]
Puskar, A. Internal Friction of Materials; Cambridge International Science Publishing: Cambridge, UK, 2001.
Donato, T.A.G.; de Almeida, L.H.; Nogueira, R.A.; Niemeyer, T.C.; Grandini, C.R.; Caram, R.; Schneider, S.G.; Santos, A.R., Jr. Cytotoxicity study of some Ti alloys used as biomaterial. Mater. Sci. Eng. C?2009, 29, 1365–1369.
[28]
Correa, D.R.N.; Vicente, F.B.; Donato, T.A.G.; Arana-Chavez, V.E.; Buzalaf, M.A.R.; Grandini, C.R. The effect of the solute on the structure, microstructure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications. Mater. Sci. Eng. C?2014, 34, 354–359.
[29]
Atala, A.; Lanza, R. Methods of Tissue Engineering; Academic Press: New York, NY, USA, 2002.