Nanoparticle research and development have brought significant breakthroughs in many areas of basic and applied sciences. However, efficiently collecting nanoparticles in large quantities in pure and natural systems is a major challenge in nanoscience. This review article has focused on experimental investigation and implications of nanoparticles in soil, clay, geological and environmental sciences. An automated ultrafiltration device (AUD) apparatus was used to demonstrate efficient collection and separation of nanoparticles in highly weathering red soils, black soils, and gouge of earthquake fault, as well as zeolite. The kaolinite, illite, goethite, and hematite were identified in highly weathering red soils. Transmission electron microscopic (TEM) images showed the presence of hematite nanoparticles on the surface coating of kaolinite nanoparticles and aggregated hematite nanoparticles overlapping the edge of a kaolinite flake in a size range from 4 to 7 nm. The maximum crystal violet (CV) and methylene blue (MB) adsorption amount of smectite nanoparticles (<100 nm) separated by black soils were about two to three times higher than those of bulk sample (<2000 nm). The smectite nanoparticles adsorb both CV and MB dyes efficiently and could be employed as a low-cost alternative to remove cationic dyes in wastewater treatment. Quartz grain of <50 nm was found in the gouge of fault by X-ray diffraction (XRD) analysis and TEM observation. Separated quartz could be used as the index mineral associated with earthquake fracture and the finest grain size was around 25 nm. Comparing the various particle-size fractions of zeolite showed significant differences in surface area, Si to Al molar ratio, morphology, crystallinity, framework structure, and surface atomic structure of nanoparticles from those of the bulk sample prior to particle-size fractionations. The AUD apparatus has the characteristics of automation, easy operation, and high efficiency in the separation of nanoparticles and would, thus, facilitate future nanoparticle research and developments in basic and applied sciences.
References
[1]
Zielinski, P.A.; van Neste, A.; Akolekar, D.B.; Kaliaguine, S. Effect of high-energy ball milling on the structural stability, surface and catalytic properties of small-, medium- and large-pore zeolites. Microporous Mater. 1995, 5, 123–133, doi:10.1016/0927-6513(95)00050-J.
[2]
Kiang, C.H.; Goddard, W.A.; Salem, R.J.R.; Bethune, D.S. Catalytic effects of heavy metals on the growth of carbon nanotubes and nanoparticles. J. Phys. Chem. Solids 1996, 57, 35–39, doi:10.1016/0022-3697(95)00087-9.
[3]
Kaskel, S.; Chapais, G.; Schlichte, K. Synthesis, characterization, and catalytic properties of high-surface-area aluminum silicon nitride based materials. Chem. Mater. 2005, 17, 181–185, doi:10.1021/cm0487829.
[4]
Ponce, A.A.; Klabunde, K.J. Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. J. Mol. Catal. A 2005, 225, 1–6, doi:10.1016/j.molcata.2004.08.019.
[5]
Shawkataly, O.B.; Jothiramalingam, R.; Adam, F.; Radhika, T.; Tsao, T.M.; Wang, M.K. Ru-nanoparticle deposition on naturally available clay and rice husk biomass materials—Benzene hydrogenation catalysis and synthetic strategies for green catalyst development. Catal. Sci. Technol. 2012, 2, 538–546, doi:10.1039/c1cy00269d.
[6]
Hu, J.; Chen, G.; Lo, I.M.C. Removal and recovery of Cr (VI) from wastewater by naghemite nanoparticles. Water Res. 2005, 39, 4528–4536, doi:10.1016/j.watres.2005.05.051.
[7]
G?ppert, T.M.; Müller, R.H. Adsorption kinetics of plasma plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 2005, 302, 172–186, doi:10.1016/j.ijpharm.2005.06.025.
[8]
Schumacher, B.; Denkwitz, Y.; Plzak, V.; Kinne, M.; Behm, R.J. Kinetics, mechanism, and the influence of H2 on the oxidation reaction on an Au/TiO2 catalyst. J. Catal. 2004, 224, 449–462, doi:10.1016/j.jcat.2004.02.036.
[9]
Levdansky, V.V.; Smolik, J.; Moravec, P. Influence of size effect and foreign gases on formation of nanoparticles. Int. Commun. Heat Mass Transf. 2006, 33, 56–60, doi:10.1016/j.icheatmasstransfer.2005.08.014.
[10]
Mayo, J.T.; Yavuz, C.; Yean, S.; Cong, L.; Shipley, H.; Yu, W.; Falkner, J.; Kan, A.; Tomson, M.; Colvin, V.L. The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 2007, 8, 71–75, doi:10.1016/j.stam.2006.10.005.
Tsao, T.M.; Wang, M.K.; Huang, P.M. Structural transformation and physicochemical properties of environmental nanoparticles by comparison of various particle-size fractions. Soil Sci. Soc. Am. J. 2011, 75, 533–541, doi:10.2136/sssaj2010.0098.
[13]
Gregg, S.J.; Sing, K.S.W. Adsorption, Specific Surface Area and Porosity; Academic Press: New York, NY, USA, 1982.
[14]
Webb, P.A.; Orr, C. Analytical Methods in Fine Particle Technology; Micromeritics Instrument Corp: Norcross, GA, USA, 1997.
[15]
George, S.; Steinberg, S.M.; Hodge, V. The concentration, apparent molecular weight and chemical reactivity of silica from groundwater in southern Nevada. Chemosphere 2000, 40, 57–63, doi:10.1016/S0045-6535(99)00240-4.
[16]
Hassell?v, M.; Buesseler, K.O.; Pike, S.M.; Dai, M. Application of cross-flow ultrafi ltration for the determination of colloidal abundances in suboxic ferrous-rich ground waters. Sci. Total Environ. 2007, 372, 636–644, doi:10.1016/j.scitotenv.2006.10.001.
[17]
Reid, P.M.; Wilkinson, A.E.; Tipping, E.; Jones, M.N. Determination of molecular weights of humic substances by analytical (UV scanning) ultracentrifugation. Geochim. Cosmochim. Acta 1990, 54, 131–138, doi:10.1016/0016-7037(90)90201-U.
[18]
McFadyen, P.; Fairhurst, D. High-resolution particle size analysis from nanometers to microns. Clay Miner. 1993, 28, 531–537.
[19]
Crespo, J.G.; Boddeker, K.W. Membrane Processes in Separation and Purification; Kulwer Academic Publishers: Dordrecht, The Netherlands, 1994.
Sikdar, S.K.; Grosse, D.; Rogut, I. Membrane technologies for remediating contaminated soils: A critical review. J. Membr. Sci. 1998, 151, 75–85, doi:10.1016/S0376-7388(98)00189-6.
[22]
Scott, K. Handbook of Industrial Membranes; Elsevier Advanced Technology Press: Oxford, UK, 1995.
[23]
Chceryan, M. Ultrafiltration and Microfiltration Handbook, 2nd ed.; Technomic Publishing Co.: Lancaster, PA, USA, 1998.
[24]
Schafer, A.I.; Mauch, R.; Waite, Y.D.; Fane, A.G. Charge effects in the fractionation of natural organics using ultrafiltration. Environ. Sci. Technol. 2002, 36, 2572–2580, doi:10.1021/es0016708.
[25]
Zhang, M.; Song, L. Mechanisms and parameters affecting flux decline in cross-flow microfiltration and ultrafiltration of colloids. Environ. Sci. Technol. 2000, 34, 3767–3773, doi:10.1021/es990475u.
[26]
Mulder, M. Basic Principles of Membrane Technology; Kluwer: Dordrecht, The Netherlands, 1991.
[27]
Bandow, S.; Rao, A.M.; Williams, K.A.; Thess, A.; Smalley, R.E.; Eklund, P.C. Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B 1997, 101, 8839–8842.
[28]
Kyll?nen, H.M.; Pirkonen, P.; Nystrom, M. Membrane filtration enhanced by ultrasound: A review. Desalination 2005, 181, 319–335, doi:10.1016/j.desal.2005.06.003.
[29]
Minhalma, M.; de Pinho, M.N. Flocculation/flotation/ultrafiltration integrated process for the treatment of cork processing wastewaters. Environ. Sci. Technol. 2001, 35, 4916–4921, doi:10.1021/es010119n.
[30]
Tsao, T.M.; Wang, M.K.; Huang, P.M. Automated ultrafiltration device for efficient collection of environmental nanoparticles from aqueous suspensions. Soil Sci. Soc. Am. J. 2009, 73, 1808–1816, doi:10.2136/sssaj2008.0376.
[31]
Tsao, T.M.; Wang, M.K.; Huang, P.M. An Apparatus for Collecting Nanoparticles. U.S. Patent 7501063 B2, 10 March 2009.
[32]
Napper, D.H. Polymeric Stabilization of Colloidal Dispersions; Academic Press: New York, NY, USA, 1983.
[33]
Liang, W.; Kendall, K. Aggregate formation in colloidal dispersions. Colloids Surf. A 1998, 131, 193–201, doi:10.1016/S0927-7757(97)00070-8.
Buffle, J.; Perret, D.; Newman, M. The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids, and macromolecules. In Environmental Particles, IUPAC Series on Environmental Analytical and Physical Chemistry; Buffle, J., van Leeuwen, H.P., Eds.; Lewis Publishers: Chelsea, MI, USA, 1992; Volume 1, pp. 171–230.
[36]
Matthew, A.M.; Benoit, G. Environmental filtration artifacts caused by overloading membrane filters. Environ. Sci. Technol. 2001, 35, 3774–3779, doi:10.1021/es010670k.
[37]
Tanner, C.B.; Jackson, M.L. Nomographs of sedimentation times for soil particles under gravity or centrifugal acceleration. Soil Sci. Soc. Am. Proc. 1947, 12, 60–65, doi:10.2136/sssaj1948.036159950012000C0014x.
[38]
Williams, J.W.; Kensal, E.; van Holde, K.E.; Baldwin, R.L.; Fujita, H. The theory of sedimentation analysis. Chem. Rev. 1958, 58, 715–744, doi:10.1021/cr50022a005.
[39]
Jackson, M.L. Soil Chemical Analysis: Advanced Course, 2nd ed.; University of Wisconsin: Madison, WI, USA, 1979.
[40]
Hiemenz, P.C. Principles of Colloid and Surface Chemistry, 2nd ed.; Polytehnic University Press: Pomona, CA, USA, 1986.
[41]
Laidlaw, I.; Steinmetz, M. Introduction to differential sedimentation. In Analytical Ultracentrifugation: Techniques and Methods; Scott, D.J., Harding, S.E., Rowe, A.J., Eds.; Royal Society of Chemistry: Cambridge, UK, 2005; pp. 270–290.
[42]
Breck, D.W. Zeolite Molecular Sieves; John Wiley & Sons: New York, NY, USA, 1973.
[43]
Mohr, E.C.J.; Baren, F.A.; van Schuylenborg, J. Tropical Soils: A Comprehensive Study of Their Genesis, 3rd ed.; Monton-Ichitor: The Hague, The Netherlands, 1972.
[44]
Sanchez, P. Properties and Management of Soils in the Tropics; Wiley: New York, NY, USA, 1976.
[45]
Buol, S.W.; Sanchez, P.A. Red Soils in the Americas: Morphology, Classification and Management. In Proceedings of the International Symposium on Red Soil; Academia Sinica Institute of Soil Science, Ed.; China Science: Beijing, China, 1986.
[46]
Eswaran, H.; Ikawa, H.; Kimble, J.M. Oxisols of the World. In Proceedings of the International Symposium on Red Soil; Academia Sinica Institute of Soil Science, Ed.; China Science: Beijing, China, 1986; pp. 90–123.
[47]
China Soil Survey Office. China Soils; China Science: Beijing, China, 1987. (in Chinese with English abstract).
[48]
IUSS Working Group WRB. World Reference Base for Soil Resources World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006.
[49]
Wan, H.M.; Chen, S.H. The relationship between laterization, chemical and mineralogical characterizations, and weathering of gravels in Linkuo terrace. Ti Chih. 1988, 8, 27–47. (in Chinese with English abstract).
[50]
Tsao, T.M.; Chen, Y.M.; Sheu, H.S.; Zhuang, S.Y.; Shao, P.H.; Chen, H.W.; Shea, K.S.; Wang, M.K.; Shau, Y.H.; Chiang, K.Y.J. Red soil chemistry and mineralogy reflect uniform weathering environments in fluvial sediments, Taiwan. J. Soils Sediments 2012, 12, 1054–1065, doi:10.1007/s11368-012-0495-z.
[51]
Schwertmann, U.; Taylor, R.M. Iron Oxides. In Minerals in Soil Environments, 2nd; Dixon, J.B., Weed, S.B., Eds.; SSSA: Madison, WI, USA, 1989; pp. 379–438.
[52]
Ranville, J.F.; Chittleborough, D.J.; Beckett, R. Particle-size and element distributions of soil colloids: Implication for colloid transport. Soil Sci. Soc. Am. J. 2005, 69, 1173–1184, doi:10.2136/sssaj2004.0081.
[53]
Pai, C.W.; Wang, M.K.; Wang, W.M.; Houng, K.H. Smectites in iron rich calcareous soil and black soils of Taiwan. Clays Clay Miner. 1999, 47, 389–398.
[54]
Soil Survey Staff. Key to Soil Tanonomy, 6th; US Government Printing Office: Washington, DC, USA, 2006.
[55]
Graham, R.C.; Southard, A.R. Genesis of a vertisol and an associated mollisol in Northern Utah. Soil Sci. Soc. Am. J. 1983, 47, 552–559.
[56]
International Committee on Vertisols. Draft Keys; USDA-SMSS: Washington, DC, USA, 1990.
[57]
Ma, K.F.; Lee, C.T.; Tsai, Y.B.; Shin, T.C.; Mori, J. The Chi-Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault. Eos Trans. AGU 1999, 80, 605–611.
[58]
Lee, J.C.; Chu, H.T.; Angelier, J.; Chan, Y.C.; Hu, J.C.; Lu, C.Y.; Rau, R.J.J. Geometry and structure of northern surface ruptures of the 1999 Mw = 7.6 Chi-Chi Taiwan earthquake: Influence from inherited fold belt structures. J. Struct. Geol. 2002, 24, 173–192.
[59]
Angelier, J.; Lee, J.C.; Hu, J.C.; Chu, H.T.J. Three-dimensional deformation along the rupture trace of the September 21st, 1999, Taiwan earthquake: A case study in the Kuangfu school. In J. Struct. Geol.; 2003; Volume 25, pp. 351–370.
[60]
Heaton, T.H. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter. 1990, 64, 1–20, doi:10.1016/0031-9201(90)90002-F.
[61]
Wilson, B.; Dewers, T.; Reches, Z.E.; Brune, J. Particle size and energetics of gouge from earthquake rupture zones. Nature 2005, 434, 749–752, doi:10.1016/0031-9201(90)90002-F.
[62]
Chester, J.S.; Chester, F.M.; Kronenberg, A.K. Fracture surface energy of the Punchbowl fault, San Andreas system. Nature 2005, 437, 133–136.
[63]
Ma, K.-F.; Tanaka, H.; Song, S.-R.; Wang, C.-Y.; Hung, J.-H.; Tsai, Y.-B.; Mori, J.; Song, Y.-F.; Yeh, E.-C.; Soh, W.; et al. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling. Nature 2006, 444, 473–476.
[64]
Chou, Y.M.; Tsao, T.M.; Song, S.R.; Yeh, E.C.; Wang, M.K.; Lin, C.S.; Lee, T.Q.; Chen, H.F. Preliminary Results of Nano-particle Analysis of Chelungpu-Fault Gouge in Wu-Feng, Central Taiwan; American Geophysical Union Fall Meeting: San Francisco, CA, USA, 2007.
[65]
Gibbs, R.J. The geochemistry of the amazon river system: Part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol. Soc. Am. Bull. 1967, 78, 1203–1232, doi:10.1130/0016-7606(1967)78[1203:TGOTAR]2.0.CO;2.
[66]
Wang, Y.; Forssberg, E. Production of carbonate and silica nano-particles in stirred bead milling. Int. J. Miner. Process. 2006, 81, 1–14.
[67]
Heilbronner, R.; Keulen, N. Grain size and grain shape analysis of fault rocks. Tectonophysics 2006, 427, 199–216.
[68]
Sammis, C.G.; King, G.C.P. Mechanical origin of power law scaling in fault zone rock. Geophys. Res. Lett. 2007, 34, L04312, doi:10.1029/2006gl028548.