In general, cell culture-based assays, investigations of cell number, viability, and metabolic activities during culture periods, are commonly performed to study the cellular responses under various culture conditions explored. Quantification of cell numbers can provide the information of cell proliferation. Cell viability study can understand the percentage of cell death under a specific tested substance. Monitoring of the metabolic activities is an important index for the study of cell physiology. Based on the development of microfluidic technology, microfluidic systems incorporated with impedance measurement technique, have been reported as a new analytical approach for cell culture-based assays. The aim of this article is to review recent developments on the impedance detection of cellular responses in micro/nano environment. These techniques provide an effective and efficient technique for cell culture-based assays.
References
[1]
Lei, K.F. Microfluidic systems for diagnostic applications: A review. J. Lab. Autom. 2012, 17, 330–347.
[2]
Andersson, H.; van den Berg, A. Microfluidic devices for cellomics: A review. Sens. Actuators B 2003, 92, 315–325, doi:10.1016/S0925-4005(03)00266-1.
[3]
Zhang, C.; Xu, J.; Ma, W.; Zheng, W. PCR microfluidic devices for DNA amplification. Biotech. Advances 2006, 24, 243–284, doi:10.1016/j.biotechadv.2005.10.002.
Wang, L.; Li, P.C.H. Microfluidic DNA microarray analysis: A review. Anal. Chim. Acta. 2011, 687, 12–27, doi:10.1016/j.aca.2010.11.056.
[6]
Weng, X.; Jiang, H.; Li, D. Microfluidic DNA hybridization assays. Microfluid. Nanofluid. 2011, 11, 367–383, doi:10.1007/s10404-011-0858-6.
[7]
Lei, K.F.; Cheng, H.; Choy, K.Y.; Chow, L.M.C. Electrokinetic DNA concentration in micro systems. Sens. Actuators A 2009, 156, 381–387, doi:10.1016/j.sna.2009.10.006.
[8]
He, Y.; Tsutsui, M.; Fan, C.; Taniguchi, M.; Kawai, T. Gate manipulation of DNA capture into nanopores. ACS Nano. 2011, 5, 8391–8397, doi:10.1021/nn203186c.
[9]
Diercks, A.H.; Ozinsky, A.; Hansen, C.L.; Spotts, J.M.; Rodriguez, D.J.; Aderem, A. A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal. Biochem. 2009, 386, 30–35, doi:10.1016/j.ab.2008.12.012.
[10]
Lei, K.F. Quantitative electrical detection of immobilized protein using gold nanoparticles and gold enhancement on a biochip. Meas. Sci. Technol. 2011, 22, doi:10.1088/0957-0233/22/10/105802.
[11]
Hervas, M.; Lopez, M.A.; Escarpa, A. Electrochemical immunosensing on board microfluidic chip platforms. TrAC Trends Anal. Chem. 2012, 31, 109–128, doi:10.1016/j.trac.2011.06.020.
Bhattacharyya, A.; Klapperich, C.M. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomed. Microdevices 2007, 9, 245–251, doi:10.1007/s10544-006-9026-2.
[14]
Van den Brink, F.T.G.; Gool, E.; Frimat, J.P.; Borner, J.; van den Berg, A.; Le Gac, S. Parallel single-cell analysis microfluidic platform. Electrophoresis 2011, 32, 3094–3100, doi:10.1002/elps.201100413.
[15]
Zare, R.N.; Kim, S. Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 2010, 12, 187–201, doi:10.1146/annurev-bioeng-070909-105238.
[16]
Wu, M.H.; Huang, S.B.; Lee, G.B. Microfluidic cell culture systems for drug research. Lab Chip 2010, 10, 939–956, doi:10.1039/b921695b.
[17]
Lei, K.F.; Leung, P.H.M. Microelectrode array biosensor for the detection of Legionellapneumophila. Microelectron. Eng. 2012, 91, 174–177, doi:10.1016/j.mee.2011.10.002.
[18]
Lei, K.F.; Wu, M.H.; Liao, P.Y.; Chen, Y.M.; Pan, T.M. Development of a micro-scale perfusion 3D cell culture biochip with an incorporated electrical impedance measurement scheme for the quantification of cell number in a 3D cell culture construct. Microfluid. Nanofluid. 2012, 12, 117–125, doi:10.1007/s10404-011-0854-x.
[19]
Meyvantsson, I.; Beebe, D.J. Cell culture models in microfluidic systems. Ann. Rev. Anal. Chem. 2008, 1, 423–449, doi:10.1146/annurev.anchem.1.031207.113042.
[20]
Ni, M.; Tong, W.H.; Choudhury, D.; Rahim, N.A.A.; Iliescu, C.; Yu, H. Cell culture on MEMS platforms: A review. Int. J. Mol. Sci. 2009, 10, 5411–5441, doi:10.3390/ijms10125411.
[21]
Hung, P.J.; Lee, P.J.; Sabounchi, P.; Aghdam, N.; Lin, R.; Lee, L.P. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab Chip 2005, 5, 44–48, doi:10.1039/b410743h.
Saum, A.G.E.; Cumming, R.H.; Rowell, F.J. Use of substrate coated electrodes and ac impedance spectroscopy for the detection of enzyme activity. Biosens. Bioelectron. 1998, 13, 511–518, doi:10.1016/S0956-5663(97)00129-2.
[24]
Grant, S.; Davis, F.; Law, K.A.; Barton, A.C.; Collyer, S.D.; Higson, S.P.J.; Gibson, T.D. Label-free and reversible immunosensor based upon an ac impedance interrogation protocol. Anal. Chem. Acta 2005, 537, 163–168, doi:10.1016/j.aca.2005.01.003.
[25]
Chiriaco, M.S.; Primiceri, E.; D’Amone, E.; Ionescu, R.E.; Rinaldi, R.; Maruccio, G. EIS microfluidic chips for flow immunoassay and ultrasensitive cholera toxin detection. Lab Chip 2011, 11, 658–663, doi:10.1039/c0lc00409j.
Ma, K.S.; Zhou, H.; Zoval, J.; Madou, M. DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy. Sens. Actuators B 2006, 114, 58–64, doi:10.1016/j.snb.2005.04.038.
[28]
Javanmard, M.; Davis, R.W. A microfluidic platform for electrical detection of DNA hybridization. Sens. Actuators B 2011, 154, 22–27, doi:10.1016/j.snb.2010.03.067.
[29]
Mishra, N.N.; Retterer, S.; Zieziulewicz, T.J.; Isaacson, M.; Szarowski, D.; Mousseau, D.E.; Lawrence, D.A.; Turner, J.N. On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis. Biosens. Bioelectron. 2005, 21, 696–704, doi:10.1016/j.bios.2005.01.011.
[30]
Krommenhoek, E.E.; Gardeniers, J.G.E.; Bomer, J.G.; van den Berg, A.; Li, X.; Ottens, M.; van der Wielen, L.A.M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; et al. Monitoring of yeast cell concentration using a micromachined impedance sensor. Sens. Actuators B 2006, 115, 384–389, doi:10.1016/j.snb.2005.09.028.
[31]
Yang, L.; Li, Y.; Griffis, C.L.; Johnson, M.G. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens. Bioelectron. 2004, 19, 1139–1147, doi:10.1016/j.bios.2003.10.009.
[32]
Ehret, R.; Baumann, W.; Brischwein, M.; Schwinde, A.; Stegbauer, K.; Wolf, B. Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosens. Bioelectron. 1997, 12, 29–41, doi:10.1016/0956-5663(96)89087-7.
[33]
Lei, K.F.; Wu, M.H.; Hsu, C.W.; Chen, Y.D. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens. Bioelectron. 2014, 51, 16–21, doi:10.1016/j.bios.2013.07.031.
[34]
Varshney, M.; Li, Y. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens. Bioelectron. 2009, 24, 2951–2960, doi:10.1016/j.bios.2008.10.001.
[35]
Pethig, R.; Markx, R.H. Applications of dielectrophoresis in biotechnology. Trends Biotechnol. 1997, 15, 426–432, doi:10.1016/S0167-7799(97)01096-2.
[36]
Giaever, I.; Keese, C.R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. USA 1984, 81, 3761–3764, doi:10.1073/pnas.81.12.3761.
[37]
Radke, S.M.; Alocilja, E.C. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens. Bioelectron. 2005, 20, 1662–1667, doi:10.1016/j.bios.2004.07.021.
[38]
Varshney, M.; Li, Y.; Srinivasan, B.; Tung, S. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sens. Actuators B 2007, 128, 99–107, doi:10.1016/j.snb.2007.03.045.
[39]
Yang, L. Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 2008, 74, 1621–1629, doi:10.1016/j.talanta.2007.10.018.
[40]
Thakur, M.; Mergel, K.; Weng, A.; Frech, S.; Gilabert-Oriol, R.; Bachran, D.; Melzig, M.F.; Fuchs, H. Real time monitoring of the cell viability during treatment with tumor-targeted toxins and saponins using impedance measurement. Biosens. Bioelectron. 2012, 35, 503–506, doi:10.1016/j.bios.2012.03.024.
[41]
Yeon, J.H.; Park, J.K. Cytotoxicity test based on electrochemical impedance measurement of hepg2 cultured in microfabricated cell chip. Anal. Biochem. 2005, 341, 308–315, doi:10.1016/j.ab.2005.03.047.
[42]
Liu, Q.; Yu, J.; Xiao, L.; Tang, J.C.O.; Zhang, Y.; Wang, P.; Yang, M. Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Biosens. Bioelectron. 2009, 24, 1305–1310, doi:10.1016/j.bios.2008.07.044.
[43]
Diemert, S.; Dolga, A.M.; Tobaben, S.; Grohm, J.; Pfeifer, S.; Oexler, E.; Culmsee, C. Impedance measurement for real time detection of neuronal cell death. J. Neurosci. Methods 2012, 203, 69–77, doi:10.1016/j.jneumeth.2011.09.012.
[44]
Cheng, W.; Klauke, N.; Sedgwick, H.; Smith, G.L.; Cooper, J.M. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip 2006, 6, 1424–1431, doi:10.1039/b608202e.
[45]
Rodrigues, N.P.; Sakai, Y.; Fujii, T. Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen. Sens. Actuators B 2008, 132, 608–613, doi:10.1016/j.snb.2007.12.025.
[46]
Abbot, A. Cell culture: Biology's new dimension. Nature 2003, 424, 870–872, doi:10.1038/424870a.
[47]
Cukierman, E.; Pankov, R.; Stevens, D.R.; Yamada, K.M. Taking cell-matrix adhesions to the third dimension. Science 2001, 294, 1708–1712, doi:10.1126/science.1064829.