全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Primary Phases and Natural Weathering of Smelting Slag at an Abandoned Mine Site in Southwest Japan

DOI: 10.3390/min3040412

Keywords: slag, weathering, Zn, Cu, pollution, willemite, matte drop

Full-Text   Cite this paper   Add to My Lib

Abstract:

Artisanal metallurgical slag produced more than 50 years ago at a mine site in southwest Japan is rich in toxic metals and metalloids. Some of the slag remains on a waste dump and could contaminate the surrounding area through the dissolution of heavy metals and metalloids during weathering. To assess this risk, this study has investigated the behavior of the toxic elements in the smelting slag during weathering. Most of the potentially toxic elements are contained in willemite and/or matte drops. Maximum metal and metalloid concentrations in the slag are 28.1 wt % Fe, 22.7 wt % Zn, 1.63 wt % Cu, 3450 mg/kg Sn, 826 mg/kg Pb, 780 mg/kg As, and 116 mg/kg Cd. Zn is mainly contained in willemite, whereas other metals and metalloids are mainly concentrated in matte drops. The willemite and matte drops are converted to Fe-hydroxides during weathering, indicating that potentially toxic metals and metalloids contained in these phases are released by weathering processes. Therefore, weathering of the artisanal metallurgical slag, containing large amounts of willemite and matte drops, may pollute the surrounding environment.

References

[1]  Costagliola, P.; Benvenuti, M.; Chiarantini, L.; Bianchi, S.; Benedetto, F.D.; Paolieri, M.; Rossato, L. Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy. Appl. Geochem. 2008, 23, 1241–1259, doi:10.1016/j.apgeochem.2008.01.005.
[2]  Georgakopoulou, M.; Bassiakos, Y.; Philanitou, O. Seriphos surface: A study of Cu slag heaps and Cu sources in the context of Early Bronze Age Aegean metal production. Archaeometry 2010, 53, 123–145, doi:10.1111/j.1475-4754.2010.00529.x.
[3]  Sáez, R.; Nocete, F.; Nieto, J.M.; Capitán, M.á.; Rovira, S. The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: Chemical and mineralogical study of slags dated to the third millennium B.C. Can. Mineral. 2003, 41, 627–638, doi:10.2113/gscanmin.41.3.627.
[4]  Manz, M.; Castro, L.J. The environmental hazard caused by smelter slags from the Sta. Maria de la Paz mining district in Mexico. Environ. Pollut. 1997, 98, 7–13, doi:10.1016/S0269-7491(97)00107-3.
[5]  Teng, Y.; Tuo, X.; Ni, S.; Zhang, C.; Xu, Z. Environmental geochemistry of heavy metal concentrations in soil and stream sediment in Panzhihua mining and smelting area, Southwestern China. Chin. J. Geochem. 2003, 22, 253–262, doi:10.1007/BF02842869.
[6]  Wilson, N.J.; Craw, D.; Hunter, K. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ. Pollut. 2004, 129, 257–266, doi:10.1016/j.envpol.2003.10.014.
[7]  Vdovi?, N.; Billon, G.; Gabelle, C.; Potdevin, J.L. Remobilization of metals from slag and polluted sediments (Case study: The canal of the De?le river, northern France). Environ. Pollut. 2006, 141, 359–369, doi:10.1016/j.envpol.2005.08.034.
[8]  Douay, F.; Pruvot, C.; Roussel, H.; Ciesielski, H.; Fourrier, H.; Proix, N.; Waterlot, C. Contamination of urban soils in an area of northern France polluted by dust emission of two smelters. Water Air Soil Pollut. 2008, 188, 247–260, doi:10.1007/s11270-007-9541-7.
[9]  Piatak, N.M.; Seal, R.R., II; Hammarstrom, J.M. Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine site. Appl. Geochem. 2004, 19, 1039–1064, doi:10.1016/j.apgeochem.2004.01.005.
[10]  Navarro, A.; Cardellach, E.; Mendoza, J.L.; Corbella, M.; Domènech, L.M. Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain). Appl. Geochem. 2008, 23, 895–913, doi:10.1016/j.apgeochem.2007.07.012.
[11]  Vítková, M.; Ettler, V.; Johan, Z.; K?íbek, B.; ?ebek, O.; Mihaljevi?, M. Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral. Mag. 2010, 74, 581–600, doi:10.1180/minmag.2010.074.4.581.
[12]  Ettler, V.; Johan, Z.; K?íbek, B.; ?ebek, O.; Minhaljevi?, M. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Appl. Geochem. 2009, 24, 1–15.
[13]  Gee, C.; Ramsey, M.H.; Maskall, J.; Thornton, I. Mineralogy and weathering process in historical smelting slags and their effect on the mobilisation of lead. J. Geochem. Explor. 1997, 58, 249–257.
[14]  Lottermoser, B.G. Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia. Mineral. Mag. 2002, 66, 475–490, doi:10.1180/0026461026640043.
[15]  Ettler, V.; Legendre, O.; Bodénan, F.; Touray, J.C. Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from P?íbram, Czech Republic. Can. Mineral. 2001, 39, 873–888.
[16]  Collins, R.J.; Miller, R.H. Utilization of mining and mineral processing wastes in the United States. Mineral. Environ. 1979, 1, 8–19.
[17]  Piatak, N.M.; Seal, R.R., II. Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illiois (USA). Appl. Geochem. 2010, 25, 302–320, doi:10.1016/j.apgeochem.2009.12.001.
[18]  Shanmuganathan, P.; Lakshmipathiraj, P.; Srikanth, S.; Nachiappan, A.L.; Sumathy, A. Toxicity characterization and long-term stability studies on copper slag from the ISASMRLT process. Resour. Conserv. Recycl. 2008, 52, 601–611.
[19]  Raghavan, V. Fe-O-Si-Zn (Iron-Oxygen-Silicon-Zinc). J. Phase Equilibria Diffus. 2000, 31, 385–386.
[20]  Nishizono, H.; Ichikawa, H.; Suzuki, S.; Ishii, F. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 1987, 101, 15–20.
[21]  Sakakibara, M.; Ohmori, Y.; Ha, N.T.H.; Sano, S.; Sera, K. Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean-Soil Air Water 2011, 39, 739–741.
[22]  Imai, N.; Terashima, S.; Itoh, S.; Ando, A. 1996 Compilation of analytical data on nine GSJ geochemical reference samples, “Sedimentary Rock Series”. Geostand. Newsl. 1996, 20, 165–216, doi:10.1111/j.1751-908X.1996.tb00184.x.
[23]  Imai, N.; Terashima, S.; Itoh, S.; Ando, A. 1998 Compilation of analytical data for five GSJ geochemical reference samples: The “Instrumental Analysis Series”. Geostand. Newsl. 1999, 23, 223–250, doi:10.1111/j.1751-908X.1999.tb00576.x.
[24]  Parsons, M.B.; Bird, D.K.; Einaudi, M.T.; Alpers, C.N. Geological and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California. Appl. Geochem. 2001, 16, 1567–1593.
[25]  Jak, E.; Zhao, B.; Hayes, P.C. Experimental study of phase equilibria in the systems Fe-Zn-O and Fe-Zn-Si-O at metallic iron saturation. Metall. Mater. Trans. B 2000, 31, 1195–1201.
[26]  Jak, E.; Degterov, S.; Pelton, A.D.; Hayes, P.C. Coupled experimental and thermodynamics study of the Zn-Fe-Si-O system. Metall. Mater. Trans. B 2001, 32, 793–800.
[27]  Velbel, M.A. Bond strength and the relative weathering rates of simple orthosilicates. Am. J. Sci. 1999, 299, 679–696.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133