Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors.
References
[1]
Yan, H.; Row, K. Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci. 2006, 7, 155–178, doi:10.3390/i7050155.
Matsui, J.; Takayose, M.; Akamatsu, K.; Nawafune, H.; Tamaki, K.; Sugimoto, N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst 2009, 134, 80–86, doi:10.1039/b803350a.
[5]
Lakshmi, D.; Bossi, A.; Whitcombe, M.J.; Chianella, I.; Fowler, S.A.; Subrahmanyam, S.; Piletska, E.V.; Piletsky, S.A. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal. Chem. 2009, 81, 3576–3584, doi:10.1021/ac802536p.
[6]
Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628, doi:10.1002/jssc.201200784.
[7]
Guan, G.; Liu, B.; Wang, Z.; Zhang, Z. Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Sensors 2008, 8, 8291–8320, doi:10.3390/s8128291.
[8]
Li, J.; Wei, G.; Zhang, Y. Molecularly Imprinted Polymers as Recognition Elements in Sensors. In Molecularly Imprinted Sensors; Elsevier: Amsterdam, The Netherlands, 2012; pp. 35–55.
[9]
He, C.; Long, Y.; Pan, J.; Li, K.; Liu, F. Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J. Biochem. Biophys. Methods 2007, 70, 133–150, doi:10.1016/j.jbbm.2006.07.005.
Tokonami, S.; Shiigi, H.; Nagaoka, T. Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal. Chim. Acta 2009, 641, 7–13, doi:10.1016/j.aca.2009.03.035.
[12]
Piletsky, S.A.; Turner, N.W.; Laitenberger, P. Molecularly imprinted polymers in clinical diagnostics—Future potential and existing problems. Med. Eng. Phys. 2006, 28, 971–977, doi:10.1016/j.medengphy.2006.05.004.
[13]
Cai, D.; Ren, L.; Zhao, H.; Xu, C.; Zhang, L.; Yu, Y.; Wang, H.; Lan, Y.; Roberts, M.F.; Chuang, J.H.; et al. A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat. Nanotechnol. 2010, 5, 597–601, doi:10.1038/nnano.2010.114.
[14]
Li, H.; Xu, W.; Wang, N.; Ma, X.; Niu, D.; Jiang, B.; Liu, L.; Huang, W.; Yang, W.; Zhou, Z. Synthesis of magnetic molecularly imprinted polymer particles for selective adsorption and separation of dibenzothiophene. Microchim. Acta 2012, 179, 123–130, doi:10.1007/s00604-012-0873-7.
[15]
Cunliffe, D.; Kirby, A.; Alexander, C. Molecularly imprinted drug delivery systems. Adv. Drug Deliv. Rev. 2005, 57, 1836–1853.
[16]
Fuchs, Y.; Soppera, O.; Haupt, K. Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—A review. Anal. Chim. Acta 2012, 717, 7–20, doi:10.1016/j.aca.2011.12.026.
[17]
Alexander, C.; Davidson, L.; Hayes, W. Imprinted polymers: Artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron 2003, 59, 2025–2057, doi:10.1016/S0040-4020(03)00152-2.
[18]
Pichon, V.; Chapuis-Hugon, F. Role of molecularly imprinted polymers for selective determination of environmental pollutants—A review. Anal. Chim. Acta 2008, 622, 48–61, doi:10.1016/j.aca.2008.05.057.
Mujahid, A.; Lieberzeit, P.A.; Dickert, F.L. Chemical sensors based on molecularly imprinted sol-gel materials. Materials 2010, 3, 2196–2217, doi:10.3390/ma3042196.
[21]
Abhilash, M. Potential applications of nanoparticles. Int. J. Pharma Bio Sci. 2010, V1(1). Available online: http://www.ijpbs.net/53.pdf (accessed on 21 November 2013).
[22]
Gültekin, A.; Ers?z, A.; Denizli, A.; Say, R. Gold-silver-nanoclusters having cholic acid imprinted nanoshell. Talanta 2012, 93, 364–370, doi:10.1016/j.talanta.2012.02.057.
[23]
Wang, H.T.; Wu, X.; Zhao, H.; Quan, X. Enhanced photocatalytic degradation of tetracycline hydrochloride by molecular imprinted film modified TiO2 nanotubes. Chin. Sci. Bull. 2012, 57, 601–605, doi:10.1007/s11434-011-4897-x.
[24]
Esfandyari-Manesh, M.; Javanbakht, M.; Atyabi, F.; Mohammadi, A.; Mohammadi, S.; Akbari-Adergani, B.; Dinarvand, R. Dipyridamole recognition and controlled release by uniformly sized molecularly imprinted nanospheres. Mater. Sci. Eng. C 2011, 31, 1692–1699, doi:10.1016/j.msec.2011.07.019.
[25]
Kryscio, D.R.; Peppas, N.A. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 2012, 8, 461–473, doi:10.1016/j.actbio.2011.11.005.
[26]
Poma, A.; Turner, A.P.F.; Piletsky, S.A. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol. 2010, 28, 629–637, doi:10.1016/j.tibtech.2010.08.006.
[27]
Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Anal. Chim. Acta 2007, 584, 112–121, doi:10.1016/j.aca.2006.11.004.
[28]
Xiao, P.; Dudal, Y.; Corvini, P.F.X.; Spahr, P.; Shahgaldian, P. Synthesis and characterization of fluoroquinolone-imprinted polymeric nanoparticles. React. Funct. Polym. 2012, 72, 287–293, doi:10.1016/j.reactfunctpolym.2012.02.006.
[29]
Liu, X.; Wei, Z.H.; Huang, Y.P.; Yang, J.R.; Liu, Z.S. Molecularly imprinted nanoparticles with nontailing peaks in capillary electrochromatography. J. Chromatogr. A 2012, 1264, 137–142, doi:10.1016/j.chroma.2012.09.055.
[30]
Shamsipur, M.; Besharati-Seidani, A.; Fasihi, J.; Sharghi, H. Synthesis and characterization of novel ion-imprinted polymeric nanoparticles for very fast and highly selective recognition of copper(II) ions. Talanta 2010, 83, 674–681, doi:10.1016/j.talanta.2010.10.021.
[31]
Shamsipur, M.; Rajabi, H. Flame photometric determination of cesium ion after its preconcentration with nanoparticles imprinted with the cesium-dibenzo-24-crown-8 complex. Microchim. Acta 2013, 180, 243–252, doi:10.1007/s00604-012-0927-x.
[32]
Gu, X.H.; Xu, R.; Yuan, G.L.; Lu, H.; Gu, B.R.; Xie, H.P. Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine. Anal. Chim. Acta 2010, 675, 64–70, doi:10.1016/j.aca.2010.06.033.
[33]
Dai, J.; Pan, J.; Xu, L.; Li, X.; Zhou, Z.; Zhang, R.; Yan, Y. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium. J. Hazard. Mater. 2012, 205–206, 179–188, doi:10.1016/j.jhazmat.2011.12.056.
[34]
Esfandyari-Manesh, M.; Javanbakht, M.; Dinarvand, R.; Atyabi, F. Molecularly imprinted nanoparticles prepared by miniemulsion polymerization as selective receptors and new carriers for the sustained release of carbamazepine. J. Mater. Sci. Mater. Med. 2012, 23, 963–972, doi:10.1007/s10856-012-4565-y.
[35]
Alizadeh, T.; Ganjali, M.R.; Akhoundian, M. Synthesis and application of different nano-sized imprinted polymers for the preparation of promethazine membrane electrodes and comparison of their efficiencies. Int. J. Electrochem. Sci. 2012, 7, 7655–7674.
Subrahmanyam, S.; Guerreiro, A.; Poma, A.; Moczko, E.; Piletska, E.; Piletsky, S. Optimisation of experimental conditions for synthesis of high affinity MIP nanoparticles. Eur. Polym. J. 2013, 49, 100–105, doi:10.1016/j.eurpolymj.2012.09.022.
Lu, F.; Sun, M.; Fan, L.; Qiu, H.; Li, X.; Luo, C. Flow injection chemiluminescence sensor based on core–shell magnetic molecularly imprinted nanoparticles for determination of chrysoidine in food samples. Sens. Actuators B 2012, 173, 591–598, doi:10.1016/j.snb.2012.07.069.
[40]
Ma, J.; Yuan, L.; Ding, M.; Wang, S.; Ren, F.; Zhang, J.; Du, S.; Li, F.; Zhou, X. The study of core-shell molecularly imprinted polymers of 17β-estradiol on the surface of silica nanoparticles. Biosens. Bioelectron. 2011, 26, 2791–2795, doi:10.1016/j.bios.2010.10.045.
[41]
Li, L.; He, X.W.; Chen, L.X.; Zhang, Y. Preparation of novel bovine hemoglobin surface-imprinted polystyrene nanoparticles with magnetic susceptibility. Sci. China Ser. B 2009, 52, 1402–1411, doi:10.1007/s11426-009-0182-0.
Shamsipur, M.; Rajabi, H.R.; Beyzavi, M.H.; Sharghi, H. Bulk polymer nanoparticles containing a tetrakis (3-hydroxyphenyl)porphyrin for fast and highly selective separation of mercury ions. Microchim. Acta 2013, 180, 791–799, doi:10.1007/s00604-013-0983-x.
[44]
Tan, F.; Sun, D.; Gao, J.; Zhao, Q.; Wang, X.; Teng, F.; Quan, X.; Chen, J. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. J. Hazard. Mater. 2013, 244–245, 750–757, doi:10.1016/j.jhazmat.2012.11.003.
[45]
Lian, W.; Liu, S.; Yu, J.; Li, J.; Cui, M.; Xu, W.; Huang, J. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens. Bioelectron. 2013, 44, 70–76, doi:10.1016/j.bios.2013.01.002.
[46]
Vlatakis, G.; Andersson, L.I.; Müller, R.; Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361, 645–647, doi:10.1038/361645a0.
[47]
Lai, J.P.; Yang, M.L.; Niessner, R.; Knopp, D. Molecularly imprinted microspheres and nanospheres for di (2-ethylhexyl)phthalate prepared by precipitation polymerization. Anal. Bioanal. Chem. 2007, 389, 405–412, doi:10.1007/s00216-007-1321-0.
[48]
Wei, S.; Molinelli, A.; Mizaikoff, B. Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol. Biosens. Bioelectron. 2006, 21, 1943–1951, doi:10.1016/j.bios.2005.09.017.
[49]
Yao, Q.; Zhou, Y. Synthesis of TiO2 hybrid molecular imprinted nanospheres linked by silane coupling agent. J. Inorg. Organomet Polym. Mater. 2009, 19, 466–472, doi:10.1007/s10904-009-9289-1.
[50]
Lehmann, M.; Dettling, M.; Brunner, H.; Tovar, G.E.M. Affinity parameters of amino acid derivative binding to molecularly imprinted nanospheres consisting of poly [(ethylene glycol dimethacrylate)-co-(methacrylic acid)]. J. Chromatogr. B 2004, 808, 43–50, doi:10.1016/j.jchromb.2004.03.068.
[51]
Kolarov, F.; Niedergall, K.; Bach, M.; Tovar, G.M.; Gauglitz, G. Optical sensors with molecularly imprinted nanospheres: A promising approach for robust and label-free detection of small molecules. Anal. Bioanal. Chem. 2012, 402, 3245–3252, doi:10.1007/s00216-011-5592-0.
[52]
Diltemiz, S.E.; Say, R.; Büyüktiryaki, S.; Hür, D.; Denizli, A.; Ers?z, A. Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta 2008, 75, 890–896, doi:10.1016/j.talanta.2007.12.036.
[53]
Gültekin, A.; Ers?z, A.; Sar??zlü, N.Y.; Denizli, A.; Say, R. Nanosensors having dipicolinic acid imprinted nanoshell for Bacillus cereus spores detection. J. Nanopart. Res. 2010, 12, 2069–2079, doi:10.1007/s11051-009-9766-z.
Piperno, S.; Tse Sum Bui, B.; Haupt, K.; Gheber, L.A. Immobilization of molecularly imprinted polymer nanoparticles in electrospun poly(vinyl alcohol) nanofibers. Langmuir 2011, 27, 1547–1550, doi:10.1021/la1041234.
[56]
Kim, W.J.; Chang, J.Y. Molecularly imprinted polyimide nanofibers prepared by electrospinning. Mater. Lett. 2011, 65, 1388–1391, doi:10.1016/j.matlet.2011.02.010.
[57]
Sueyoshi, Y.; Utsunomiya, A.; Yoshikawa, M.; Robertson, G.P.; Guiver, M.D. Chiral separation with molecularly imprinted polysulfone-aldehyde derivatized nanofiber membranes. J. Membr. Sci. 2012, 401–402, 89–96, doi:10.1016/j.memsci.2012.01.033.
[58]
Sueyoshi, Y.; Fukushima, C.; Yoshikawa, M. Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J. Membr. Sci. 2010, 357, 90–97, doi:10.1016/j.memsci.2010.04.005.
[59]
Kan, X.; Liu, T.; Zhou, H.; Li, C.; Fang, B. Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination. Microchim. Acta 2010, 171, 423–429, doi:10.1007/s00604-010-0455-5.
[60]
Huang, J.D.; Zhang, X.M.; Liu, S.; Lin, Q.; He, X.R.; Xing, X.R.; Lian, W.J. Electrochemical sensor for bisphenol A detection based on molecularly imprinted polymers and gold nanoparticles. J. Appl. Electrochem. 2011, 41, 1323–1328, doi:10.1007/s10800-011-0350-8.
[61]
Huang, J.; Zhang, X.; Lin, Q.; He, X.; Xing, X.; Huai, H.; Lian, W.; Zhu, H. Electrochemical sensor based on imprinted sol-gel and nanomaterials for sensitive determination of bisphenol A. Food Control 2011, 22, 786–791, doi:10.1016/j.foodcont.2010.11.017.
[62]
Riskin, M.; Tel-Vered, R.; Bourenko, T.; Granot, E.; Willner, I. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: Development of an electrochemical TNT sensor based on π-Donor-acceptor interactions. J. Am. Chem. Soc. 2008, 130, 9726–9733, doi:10.1021/ja711278c.
[63]
Gam-Derouich, S.; Mahouche-Chergui, S.; Truong, S.; Ben Hassen-Chehimi, D.; Chehimi, M.M. Design of molecularly imprinted polymer grafts with embedded gold nanoparticles through the interfacial chemistry of aryl diazonium salts. Polymer 2011, 52, 4463–4470, doi:10.1016/j.polymer.2011.08.007.
[64]
Kan, X.; Zhao, Y.; Geng, Z.; Wang, Z.; Zhu, J.J. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J. Phys. Chem. C 2008, 112, 4849–4854, doi:10.1021/jp077445v.
[65]
Lian, W.J.; Huang, J.D.; Yu, J.H.; Zhang, X.M.; Lin, Q.; He, X.R.; Xing, X.R.; Liu, S. A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline. Food Control 2012, 26, 620–627, doi:10.1016/j.foodcont.2012.02.023.
[66]
Hu, Y.; Zhang, Z.; Zhang, H.; Luo, L.; Yao, S. Selective and sensitive molecularly imprinted sol-gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4@Au-multi-walled carbon nanotubes–chitosan. J. Solid State Electrochem. 2012, 16, 857–867, doi:10.1007/s10008-011-1434-4.
[67]
Du, D.; Chen, S.; Cai, J.; Tao, Y.; Tu, H.; Zhang, A. Recognition of dimethoate carried by bi-layer electrodeposition of silver nanoparticles and imprinted poly-o-phenylenediamine. Electrochim. Acta 2008, 53, 6589–6595, doi:10.1016/j.electacta.2008.04.027.
[68]
Zhao, P.; Hao, J. Tert-butylhydroquinone recognition of molecular imprinting electrochemical sensor based on core–shell nanoparticles. Food Chem. 2013, 139, 1001–1007, doi:10.1016/j.foodchem.2013.01.035.
[69]
Lian, W.J.; Liu, S.; Yu, J.H.; Xing, X.R.; Li, J.; Cui, M.; Huang, J.D. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens. Bioelectron. 2012, 38, 163–169, doi:10.1016/j.bios.2012.05.017.
[70]
Li, H.; Xie, C.; Fu, X. Electrochemiluminescence sensor for sulfonylurea herbicide with molecular imprinting core–shell nanoparticles/chitosan composite film modified glassy carbon electrode. Sens. Actuators B 2013, 181, 858–866, doi:10.1016/j.snb.2013.02.094.
[71]
Gültekin, A.; Diltemiz, S.E.; Ers?z, A.; Sar??zlü, N.Y.; Denizli, A.; Say, R. Gold-silver nanoclusters having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition. Talanta 2009, 78, 1332–1338, doi:10.1016/j.talanta.2009.02.007.
[72]
Lee, M.H.; Chen, Y.C.; Ho, M.H.; Lin, H.Y. Optical recognition of salivary proteins by use of molecularly imprinted poly(ethylene-co-vinyl alcohol)/quantum dot composite nanoparticles. Anal. Bioanal. Chem. 2010, 397, 1457–1466, doi:10.1007/s00216-010-3631-x.
[73]
Jing, T.; Du, H.; Dai, Q.; Xia, H.; Niu, J.; Hao, Q.; Mei, S.; Zhou, Y. Magnetic molecularly imprinted nanoparticles for recognition of lysozyme. Biosens. Bioelectron. 2010, 26, 301–306, doi:10.1016/j.bios.2010.08.044.
[74]
Koshkin, A.V.; Sazhnikov, V.A.; Men’shikova, A.Y.; Pankova, G.A.; Evseeva, T.G.; Alfimov, M.V. Naphthalene vapor sorption by polymer nanoparticles with molecularly imprinted shells. Nanotechnol. Russia 2012, 7, 15–21, doi:10.1134/S1995078012010120.
[75]
?zgür, E.; Y?lmaz, E.; ?ener, G.; Uzun, L.; Say, R.; Denizli, A. A new molecular imprinting-based mass-sensitive sensor for real-time detection of 17β-estradiol from aqueous solution. Environ. Prog. Sustain. Energy 2012, 32, 1164–1169.
[76]
Hussain, M.; Iqbal, N.; Lieberzeit, P.A. Acidic and basic polymers for molecularly imprinted folic acid sensors—QCM studies with thin films and nanoparticles. Sens. Actuators B: Chem. 2013, 176, 1090–1095, doi:10.1016/j.snb.2012.09.082.
[77]
Sener, G.; Ozgur, E.; Y?lmaz, E.; Uzun, L.; Say, R.; Denizli, A. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme molecularly imprinted nanoparticles. Biosens. Bioelectron. 2010, 26, 815–821, doi:10.1016/j.bios.2010.06.003.
[78]
Zeng, Z.; Hoshino, Y.; Rodriguez, A.; Yoo, H.; Shea, K.J. Synthetic polymer nanoparticles with antibody-like affinity for a hydrophilic peptide. ACS Nano 2010, 4, 199–204, doi:10.1021/nn901256s.
[79]
Hedborg, E.; Winquist, F.; Lundstr?m, I.; Andersson, L.I.; Mosbach, K. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices. Sens. Actuators A 1993, 37–38, 796–799, doi:10.1016/0924-4247(93)80134-3.
Ton, X.A.; Acha, V.; Haupt, K.; Tse Sum Bui, B. Direct fluorimetric sensing of UV-excited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization. Biosens. Bioelectron. 2012, 36, 22–28, doi:10.1016/j.bios.2012.03.033.
[82]
Lieberzeit, P.A.; Afzal, A.; Rehman, A.; Dickert, F.L. Nanoparticles for detecting pollutants and degradation processes with mass-sensitive sensors. Sens. Actuators B 2007, 127, 132–136, doi:10.1016/j.snb.2007.07.020.
Mustafa, G.; Hussain, M.; Iqbal, N.; Dickert, F.L.; Lieberzeit, P.A. Quartz crystal microbalance sensors based on affinity interactions between organic thiols and molybdenum disulfide nanoparticles. Sens. Actuators B 2012, 162, 63–67, doi:10.1016/j.snb.2011.12.026.
[86]
Iqbal, N.; Afzal, A. Imprinted polyurethane-gold nanoparticle composite films for rapid mass-sensitive detection of organic vapors. Sci. Adv. Mater. 2013, 5, 939–946, doi:10.1166/sam.2013.1542.
[87]
Subramanian, V. Nanomaterials in Soil and Food Analysis. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec., J., Eds.; Springer: Berlin, Germany, 2011.
[88]
Subramanian, V.; Jerzy, R. Nanomaterials in electrochemical biosensors for food analysis: A review. Pol. J. Food Nutr. Sci. 2008, 58, 157–164.
[89]
Iqbal, N.; Mustafa, G.; Rehman, A.; Biedermann, A.; Najafi, B.; Lieberzeit, P.A.; Dickert, F.L. QCM-arrays for sensing terpenes in fresh and dried herbs via bio-mimetic MIP layers. Sensors 2010, 10, 6361–6376, doi:10.3390/s100706361.
[90]
Dias, L.A.; Peres, A.M.; Vilas-Boas, M.; Rocha, M.A.; Estevinho, L.; Machado, A.A.S.C. An electronic tongue for honey classification. Microchim. Acta 2008, 163, 97–102, doi:10.1007/s00604-007-0923-8.
[91]
Kong, L.J.; Pan, M.F.; Fang, G.Z.; He, X.L.; Yang, Y.K.; Dai, J.; Wang, S. Molecularly imprinted quartz crystal microbalance sensor based on poly (o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination. Biosens. Bioelectron. 2014, 51, 286–292, doi:10.1016/j.bios.2013.07.043.