Graphene and its derivatives combine a numerous range of supreme properties that can be useful in many applications. The purpose of this review is to analyse the photoelectrochemical properties of pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO) and their impact on semiconductor catalysts/quantum dots. The mechanism that this group of materials follows to improve their performance will be cleared by explaining how those properties can be exploited in several applications such as photo-catalysts (degradation of pollutants) and photovoltaics (solar cells).
References
[1]
Gupta, S.M.; Tripathi, M. An overview of commonly used semiconductor nanoparticles in photocatalysis. High Energy Chem. 2011, 46, 1–9, doi:10.1134/S0018143912010134.
Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71, doi:10.1080/10408430903505036.
[6]
Winnink, J.J. Searching for Structural Shifts in Science: Graphene R & D before and after Novoselov et al. (2004 ); Dual PhD Centre The Hague, Leiden University and The Netherlands Patent Office: Leiden, The Hague, Rijswijk, The Netherlands; pp. 1–12.
[7]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669, doi:10.1126/science.1102896.
[8]
Freitag, M.; Low, T.; Xia, F.; Avouris, P. Photoconductivity of biased graphene. Nat. Phot. 2013, 7, 53–59, doi:10.1038/nphoton.2012.314.
[9]
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Phot. 2010, 4, 611–622, doi:10.1038/nphoton.2010.186.
[10]
Tan, L.-L.; Chai, S.-P.; Mohamed, A.R. Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem 2012, 5, 1868–1882, doi:10.1002/cssc.201200480.
[11]
Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200, doi:10.1038/nature11458.
[12]
Brownson, D.A.C.; Kampouris, D.K.; Banks, C.E. An overview of graphene in energy production and storage applications. J. Power Sourc. 2011, 196, 4873–4885, doi:10.1016/j.jpowsour.2011.02.022.
[13]
Brownson, D.A.C.; Bank, C.E. Graphene electrochemistry: An overview of potential applications. Analyst 2010, 135, 2768–2778, doi:10.1039/c0an00590h.
[14]
Loh, K.P.; Bao, Q.; Ang, P.K.; Yang, J. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289, doi:10.1039/b920539j.
[15]
Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene : Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214, doi:10.1021/cr3000412.
[16]
Kim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186, doi:10.1021/ja102777p.
[17]
Koinuma, M.; Ogata, C.; Kamei, Y.; Hatakeyama, K.; Tateishi, H.; Watanabe, Y.; Taniguchi, T.; Gezuhara, K.; Hayami, S.; Funatsu, A.; et al. Photochemical engineering of graphene oxide nanosheets. J. Phys. Chem. C 2012, 116, 19822–19827, doi:10.1021/jp305403r.
[18]
Wang, Y.; Huang, Y.; Song, Y.; Zhang, X.; Ma, Y.; Liang, J.; Chen, Y. Room-temperature ferromagnetism of graphene. Nano Lett. 2009, 9, 220–224, doi:10.1021/nl802810g.
[19]
Suk, J.W.; Piner, R.D.; An, J.; Ruoff, R.S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564, doi:10.1021/nn101781v.
[20]
Li, S.S.; Tu, K.H.; Lin, C.C.; Chen, C.W.; Chhowalla, M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 2010, 4, 3169–3174, doi:10.1021/nn100551j.
[21]
Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024, doi:10.1038/nchem.907.
[22]
Si, Y.; Samulski, E.T.; Hill, C.; Carolina, N. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682, doi:10.1021/nl080604h.
[23]
Zhang, X.L.; Sun, M.X.; Sun, Y.J.; Li, J.; Song, P.; Sun, T.; Cui, X.L. Photoelectrochemical Properties of graphene oxide thin film electrodes. Acta Phys. Chim. Sin. 2011, 27, 2831–2835.
[24]
Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107, doi:10.1021/jp902214f.
[25]
Hou, Y.; Wu, T.; Wang, L.; Feng, P. Integration of supertetrahedral cluster with reduced graphene oxide sheets for enhanced photostability and photoelectrochemical properties. Sci. China Chem. 2013, 56, 423–427, doi:10.1007/s11426-013-4847-3.
[26]
Ng, Y.H.; Bell, N.J.; Du, A.; Coster, H.; Smith, S.C.; Amal, R. Understanding the enhancement in photoelectrochemical properties of photocatalytically-prepared TiO2—Reduced graphene oxide composite. J. Phys. Chem. 2011, 115, 6004–6009.
[27]
Ng, Y.H.; Lightcap, I.V.; Goodwin, K.; Matsumura, M.; Kamat, P.V. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 2010, 1, 2222–2227, doi:10.1021/jz100728z.
Frank, I.W.; Tanenbaum, D.M.; van der Zande, A.M.; McEuen, P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2562, doi:10.1116/1.2789446.
[38]
First, P.N.; de Heer, W.A.; Seyller, T.; Berger, C.; Joseph, A.; Moon, J. Epitaxial graphenes on silicon carbide. MRS Bull. 2010, 35, 1–35.
[39]
Moreau, E.; Ferrer, F.J.; Vignaud, D.; Godey, S.; Wallart, X. Graphene growth by molecular beam epitaxy using a solid carbon source. Phys. Status Solid A 2010, 207, 300–303, doi:10.1002/pssa.200982412.
[40]
Thordarson, P.; Stide, J.A.; Choucair, M. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotech. 2009, 4, 30–33.
[41]
Chhowalla, M.; Teo, K.B.K.; Ducati, C.; Rupesinghe, N.L.; Amaratunga, G.A.J.; Ferrari, A.C.; Roy, D.; Robertson, J.; Milne, W.I. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 2001, 90, 5308–5317, doi:10.1063/1.1410322.
[42]
Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.L.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.
[43]
Bae, S.; Kim, S.J.; Shin, D.; Ahn, J.-H.; Hong, B.H. Towards industrial applications of graphene electrodes. Phys. Scripta 2012, T146, 014024, doi:10.1088/0031-8949/2012/T146/014024.
[44]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240, doi:10.1039/b917103g.
[45]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1939–1939.
[46]
Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-film particles of graphite oxide 1: High-yield synthesis and fleibility of the particles. Carbon 2004, 42, 2929–2937.
[47]
Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470, doi:10.1021/nn700375n.
[48]
You, H.-X.; Brown, N.M.D.; Al-Assadi, K.F. Radio-frequency (RF) plasma etching of graphite with oxygen: A scanning tunnelling microscope study. Surf. Sci. 1993, 284, 263–272, doi:10.1016/0039-6028(93)90497-8.
[49]
Gokus, T.; Nair, R.R.; Bonetti, A.; B?hmler, M.; Lombardo, A.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C.; Hartschuh, A. Making graphene luminescent by oxygen plasma treatment. ACS Nano 2009, 3, 3963–3968, doi:10.1021/nn9012753.
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565, doi:10.1016/j.carbon.2007.02.034.
[52]
Shin, H.-J.; Kim, K.K.; Benayad, A.; Yoon, S.-M.; Park, H.K.; Jung, I.-S.; Jin, M.H.; Jeong, H.-K.; Kim, J.M.; Choi, J.-Y.; et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992, doi:10.1002/adfm.200900167.
[53]
Zhou, T.; Chen, F.; Liu, K.; Deng, H.; Zhang, Q.; Feng, J.; Fu, Q. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 2011, 22, 045704.
[54]
Fan, Z.-J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L.-J.; Feng, J.; Ren, Y.-M.; Song, L.-P.; Wei, F. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 2011, 5, 191–198.
[55]
Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474, doi:10.1016/j.carbon.2010.08.006.
[56]
Wei, D.; Grande, L.; Chundi, V.; White, R.; Bower, C.; Andrew, P.; Ryh?nen, T. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem. Commun. 2012, 48, 1239–1241, doi:10.1039/c2cc16859f.
[57]
Chen, W.; Yan, L.; Bangal, P.R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010, 48, 1146–1152, doi:10.1016/j.carbon.2009.11.037.
[58]
Cote, L.J.; Cruz-Silva, R.; Huang, J. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 2009, 131, 11027–11032, doi:10.1021/ja902348k.
[59]
Lin, Z.; Yao, Y.; Li, Z.; Liu, Y.; Li, Z.; Wong, C.-P. Solvent-assisted thermal reduction of graphite oxide. J. Phys. Chem. C 2010, 114, 14819–14825.
[60]
Chen, D.; Zhang, H.; Liu, Y.; Li, J. Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 2013, 6, 1362–1387, doi:10.1039/c3ee23586f.
[61]
Wei, D.; Amaratunga, G. Photoelectrochemical cell and its applications in optoelectronics. Int. J. Electrochem. Sci. 2007, 2, 897–912.
[62]
Gregg, B.A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688–4698, doi:10.1021/jp022507x.
[63]
Chen, T.; Hu, W.; Song, J.; Guai, G.H.; Li, C.M. Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells. Adv. Funct. Mater. 2012, 22, 5245–5250, doi:10.1002/adfm.201201126.
[64]
Ahmad, I.; Khan, U.; Gun’ko, Y.K. Graphene, carbon nanotube and ionic liquid mixtures: Towards new quasi-solid state electrolytes for dye sensitised solar cells. J. Mater. Chem. 2011, 21, 16990–16996, doi:10.1039/c1jm11537e.
[65]
Anish Madhavan, A.; Kalluri, S.K.; Chacko, D.; Arun, T.A.; Nagarajan, S.; Subramanian, K.R.V; Sreekumaran Nair, A.; Nair, S.V.; Balakrishnan, A. Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes. RSC Adv. 2012, 2, 13032–13037, doi:10.1039/c2ra22091a.
[66]
Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106, doi:10.1002/adma.200901920.
[67]
Fu, X.; Jiang, T.; Zhao, Q.; Yin, H. A facile synthesis of graphene-metal (Pb, Zn, Cd, Mn) sulfide composites. J. Mater. Sci. 2011, 47, 1026–1032.
[68]
Wang, P.; Jiang, T.; Zhu, C.; Zhai, Y.; Wang, D.; Dong, S. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res. 2010, 3, 794–799, doi:10.1007/s12274-010-0046-0.
[69]
Li, Y.; Liu, Y.; Shen, W.; Yang, Y.; Wen, Y.; Wang, M. Graphene-ZnS quantum dot nanocomposites produced by solvothermal route. Mater. Lett. 2011, 65, 2518–2521, doi:10.1016/j.matlet.2011.05.055.
[70]
Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786, doi:10.1038/nmat3087.
[71]
Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. 2011, 115, 10694–10701.
[72]
Zhou, M.; Yan, J.; Cui, P. Synthesis and enhanced photocatalytic performance of WO3 nanorods @ graphene nanocomposites. Mater. Lett. 2012, 89, 258–261, doi:10.1016/j.matlet.2012.08.081.
[73]
Akhavan, O. Graphene nanomesh by ZnO nanorod. ACS Nano 2010, 4, 4174–4180, doi:10.1021/nn1007429.
[74]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38, doi:10.1038/238037a0.
[75]
Beydoun, D.; Amal, R.; Low, G.; Mcevoy, S. Role of nanoparticles in photocatalysis. J. Nanopart. Res. 1999, 1, 439–458, doi:10.1023/A:1010044830871.
[76]
Dong, P.; Wang, Y.; Guo, L.; Liu, B.; Xin, S.; Zhang, J.; Shi, Y.; Zeng, W.; Yin, S. A facile one-step solvothermal synthesis of graphene/rod-shaped TiO2 nanocomposite and its improved photocatalytic activity. Nanoscale 2012, 4, 4641–4649, doi:10.1039/c2nr31231j.
[77]
Min, Y.; He, G.; Li, R.; Zhao, W.; Chen, Y.; Zhang, Y. Doping nitrogen anion enhanced photocatalytic activity on TiO2 hybridized with graphene composite under solar light. Separ. Purific. Technol. 2013, 106, 97–104, doi:10.1016/j.seppur.2012.12.023.
[78]
Shi, M.; Shen, J.; Ma, H.; Li, Z.; Lu, X.; Li, N.; Ye, M. Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Coll. Surf. A 2012, 405, 30–37, doi:10.1016/j.colsurfa.2012.04.031.
Zhang, Y.; Xu, J.; Sun, Z.; Li, C.; Pan, C. Preparation of graphene and TiO2 layer by layer composite with highly photocatalytic efficiency. Progr. Nat. Sci. Mater. Int. 2011, 21, 467–471, doi:10.1016/S1002-0071(12)60084-7.
[81]
Lee, E.; Hong, J.-Y.; Kang, H.; Jang, J. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. J. Hazard. Mater. 2012, 219–220, 13–18, doi:10.1016/j.jhazmat.2011.12.033.
Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys. 2012, 14, 9167–9175, doi:10.1039/c2cp41318c.
[87]
Lightcap, I.V.; Kosel, T.H.; Kamat, P.V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010, 10, 577–583, doi:10.1021/nl9035109.
[88]
Zhang, X.; Sun, Y.; Cui, X.; Jiang, Z. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. Int. J. Hydr. Energy 2012, 37, 811–815, doi:10.1016/j.ijhydene.2011.04.053.
[89]
Cheng, P.; Yang, Z.; Wang, H.; Cheng, W.; Chen, M.; Shangguan, W.; Ding, G. TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int. J. Hydr. Energy 2012, 37, 2224–2230, doi:10.1016/j.ijhydene.2011.11.004.
[90]
Xiang, Q.; Yu, J.; Jaroniec, M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 2011, 3, 3670–3678, doi:10.1039/c1nr10610d.
[91]
Gao, H.; Chen, W.; Yuan, J.; Jiang, Z.; Hu, G.; Shangguan, W.; Sun, Y.; Su, J. Controllable O2?? oxidization graphene in TiO2/graphene composite and its effect on photocatalytic hydrogen evolution. Int. J. Hydr. Energy 2013, 38, 1–7, doi:10.1016/j.ijhydene.2012.10.056.
[92]
Lin, J.; Hu, P.; Zhang, Y.; Fan, M.; He, Z.; Ngaw, C.K.; Loo, J.S.C.; Liao, D.; Tan, T.T.Y. Understanding the photoelectrochemical properties of a reduced graphene oxide–WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting. RSC Adv. 2013, 3, 9330–9336, doi:10.1039/c3ra40550h.
[93]
Kemp, K.C.; Seema, H.; Saleh, M.; Le, N.H.; Mahesh, K.; Chandra, V.; Kim, K.S. Environmental applications using graphene composites: Water remediation and gas adsorption. Nanoscale 2013, 5, 3149–3171, doi:10.1039/c3nr33708a.
[94]
Wang, F.; Zhang, K. Physicochemical and photocatalytic activities of self-assembling TiO2 nanoparticles on nanocarbons surface. Curr. Appl. Phys. 2012, 12, 346–352, doi:10.1016/j.cap.2011.07.030.
[95]
Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386, doi:10.1021/nn901221k.
[96]
Zhang, K.; Kemp, K.C.; Chandra, V. Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater. Lett. 2012, 81, 127–130, doi:10.1016/j.matlet.2012.05.002.
Liu, J.; Liu, L.; Bai, H.; Wang, Y.; Sun, D.D. Gram-scale production of graphene oxide-TiO2 nanorod composites: Towards high-activity photocatalytic materials. Appl. Catal. B 2011, 106, 76–82.
[100]
Zhang, X.; Tang, Y.; Li, Y.; Wang, Y.; Liu, X.; Liu, C.; Luo, S. Reduced graphene oxide and PbS nanoparticles co-modified TiO2 nanotube arrays as a recyclable and stable photocatalyst for efficient degradation of pentachlorophenol. Appl. Catal. A 2013, 457, 78–84, doi:10.1016/j.apcata.2013.03.011.
[101]
Ghosh, T.; Cho, K.-Y.; Ullah, K.; Nikam, V.; Park, C.-Y.; Meng, Z.-D.; Oh, W.-C. High photonic effect of organic dye degradation by CdSe-graphene-TiO2 particles. J. Ind. Eng. Chem. 2013, 19, 797–805, doi:10.1016/j.jiec.2012.10.020.
[102]
Hou, J.; Yang, C.; Wang, Z.; Jiao, S.; Zhu, H. Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets for enhanced visible-light photocatalytic performance. Appl. Catal. B 2013, 129, 333–341, doi:10.1016/j.apcatb.2012.09.009.
[103]
Lin, Y.; Geng, Z.; Cai, H.; Ma, L.; Chen, J.; Zeng, J.; Pan, N.; Wang, X. Ternary Graphene-TiO2-Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability. Eur. J. Inorg. Chem. 2012, 2012, 4439–4444, doi:10.1002/ejic.201200454.
[104]
Anandan, S.; Rao, T.N.; Sathish, M.; Rangappa, D.; Honma, I.; Miyauchi, M. Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. ACS Appl. Mater. Interf. 2013, 5, 207–212.
[105]
Kim, H.-N.; Yoo, H.; Moon, J.H. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: Morphological characteristics and photocurrent enhancement. Nanoscale 2013, 5, 4200–4204, doi:10.1039/c3nr33672g.
[106]
Tang, Y.; Lee, C.; Xu, J.; Liu, Z.; Chen, Z.; He, Z.; Cao, Y.; Yuan, G.; Song, H.; Chen, L.; et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for due-sensitized solar cell application. ACS Nano 2010, 4, 3482–3488, doi:10.1021/nn100449w.
[107]
Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 2010, 4, 887–894.
[108]
Shengrui, S.; Lian, G.; Yangqiao, L.; Sun, J. Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell. Appl. Phys. Lett. 2011, 98. article number: 093112.
[109]
Zhu, G.; Xu, T.; Lv, T.; Pan, L.; Zhao, Q.; Sun, Z. Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J. Electroanal. Chem. 2011, 650, 248–251, doi:10.1016/j.jelechem.2010.10.011.
[110]
Zhao, J.; Wu, J.; Yu, F.; Zhang, X.; Lan, Z.; Lin, J. Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochim. Acta 2013, 96, 110–116, doi:10.1016/j.electacta.2013.02.067.
[111]
Yang, H.; Guo, C.; Guai, G.H.; Song, Q.; Jiang, S.P.; Li, C.M. Reduction of charge recombination by an amorphous titanium oxide interlayer in layered graphene/quantum dots photochemical cells. ACS Appl. Mater. Interf. 2011, 3, 1940–1945, doi:10.1021/am200154h.
[112]
Liu, F.; Shao, X.; Wang, J.; Yang, S.; Li, H.; Meng, X.; Liu, X.; Wang, M. Solvothermal synthesis of graphene-CdS nanocomposites for highly efficient visible-light photocatalyst. J. Alloys Comp. 2013, 551, 327–332, doi:10.1016/j.jallcom.2012.10.037.
[113]
Liang, Y.T.; Vijayan, B.K.; Lyandres, O.; Gray, K.A.; Hersam, M.C. Effect of dimensionality on the photocatalytic behavior of carbon–titania nanosheet composites: Charge transfer at nanomaterial interfaces. J. Phys. Chem. Lett. 2012, 3, 1760–1765, doi:10.1021/jz300491s.
[114]
Qiu, Y.; Yan, K.; Yang, S.; Jin, L.; Deng, H.; Li, W. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 2010, 4, 6515–6526, doi:10.1021/nn101603g.
[115]
Grande, L.; Chundi, V.T.; Wei, D.; Bower, C.; Andrew, P.; Ryh?nen, T. Graphene for energy harvesting/storage devices and printed electronics. Particuology 2012, 10, 1–8, doi:10.1016/j.partic.2011.12.001.
[116]
Yang, S.; Feng, X.; Müllen, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575–3579, doi:10.1002/adma.201101599.
Zhou, C.; Wang, Z.; Xia, J.; Via, B.K.; Zhang, F.; Xia, Y.; Li, Y. A simplistic one-pot method to produce magnetic graphene-CdS nanocomposites. C. R. Chim. 2012, 15, 714–718, doi:10.1016/j.crci.2012.05.022.
[119]
Wang, X.; Tian, H.; Yang, Y.; Wang, H.; Wang, S.; Zheng, W.; Liu, Y. Reduced graphene oxide/CdS for efficiently photocatalystic degradation of methylene blue. J. Alloys Comp. 2012, 524, 5–12.
[120]
Jia, L.; Wang, D.-H.; Huang, Y.-X.; Xu, A.-W.; Yu, H.-Q. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J. Phys. Chem. C 2011, 115, 11466–11473.
[121]
Ye, A.; Fan, W.; Zhang, Q.; Deng, W.; Wang, Y. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal. Sci. Technol. 2012, 2, 969–978, doi:10.1039/c2cy20027a.
[122]
Gao, P.; Liu, J.; Sun, D.D.; Ng, W. Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater. 2013, 250–251, 412–420, doi:10.1016/j.jhazmat.2013.02.003.
[123]
Xue, L.; Shen, C.; Zheng, M.; Lu, H.; Li, N.; Ji, G.; Pan, L.; Cao, J. Hydrothermal synthesis of graphene–ZnS quantum dot nanocomposites. Mater. Lett. 2011, 65, 198–200, doi:10.1016/j.matlet.2010.09.087.
[124]
Biswas, S.; Kar, S.; Chaudhuri, S. Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process. J. Phys. Chem. B 2005, 109, 17526–17530, doi:10.1021/jp053138i.
[125]
Pan, S.; Liu, X. ZnS-Graphene nanocomposite: Synthesis, characterization and optical properties. J. Solid State Chem. 2012, 191, 51–56, doi:10.1016/j.jssc.2012.02.048.
[126]
Shen, C.; Zheng, M.; Xue, L.; Li, N.; Lü, H.; Zhang, S.; Cao, J. Preparation of graphene-ZnS nanocomposites via hydrothermal method using two sulfide sources. Chin. J. Chem. 2011, 29, 719–723, doi:10.1002/cjoc.201190146.
[127]
Hu, H.; Wang, X.; Liu, F.; Wang, J.; Xu, C. Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfide nanocomposites: Optical and photocatalytic properties. Synth. Metals 2011, 161, 404–410, doi:10.1016/j.synthmet.2010.12.018.
[128]
Photosensitizer, M.; Zhang, Y.; Zhang, N.; Tang, Z.; Xu, Y. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 2012, 6, 9777–9789, doi:10.1021/nn304154s.
[129]
Chen, D.; Huang, F.; Ren, G.; Li, D.; Zheng, M.; Wang, Y.; Lin, Z. ZnS nano-architectures: Photocatalysis, deactivation and regeneration. Nanoscale 2010, 2, 2062–2064, doi:10.1039/c0nr00171f.
[130]
Zhou, X.; Shi, T.; Zhou, H. Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl. Surf. Sci. 2012, 258, 6204–6211, doi:10.1016/j.apsusc.2012.02.131.
[131]
Ahmad, M.; Ahmed, E.; Hong, Z.L.; Xu, J.F.; Khalid, N.R.; Elhissi, A.; Ahmed, W. A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl. Surf. Sci. 2013, 274, 273–281, doi:10.1016/j.apsusc.2013.03.035.
[132]
Fan, H.; Zhao, X.; Yang, J.; Shan, X.; Yang, L.; Zhang, Y.; Li, X.; Gao, M. ZnO-graphene composite for photocatalytic degradation of methylene blue dye. Catal. Commun. 2012, 29, 29–34.
[133]
Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B 2011, 101, 382–387, doi:10.1016/j.apcatb.2010.10.007.
[134]
Yang, Y.; Ren, L.; Zhang, C.; Huang, S.; Liu, T. Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property. ACS Appl. Mater. Interf. 2011, 3, 2779–2785, doi:10.1021/am200561k.
[135]
Liu, X.; Pan, L.; Zhao, Q.; Lv, T.; Zhu, G.; Chen, T.; Lu, T.; Sun, Z.; Sun, C. UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem. Eng. J. 2012, 183, 238–243, doi:10.1016/j.cej.2011.12.068.
[136]
Shao, D.; Yu, M.; Sun, H.; Hu, T.; Lian, J.; Sawyer, S. High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle-graphene core-shell structures. Nanoscale 2013, 5, 3664–3667, doi:10.1039/c3nr00369h.
[137]
Lu, T.; Zhang, Y.; Li, H.; Pan, L.; Li, Y.; Sun, Z. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochim. Acta 2010, 55, 4170–4173, doi:10.1016/j.electacta.2010.02.095.
[138]
Sun, L.; Shao, R.; Tang, L.; Chen, Z. Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation. J. Alloys Comp. 2013, 564, 55–62, doi:10.1016/j.jallcom.2013.02.147.
[139]
Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Arquer, F.P.G.D.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotech. 2012, 7, 363–368.
[140]
Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5, 8869–8890, doi:10.1039/c2ee22982j.